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Summary in English 

Inflammatory bowel diseases (IBDs) consist of primarily ulcerative colitis (UC) and Crohn’s 

disease (CD), which are lifelong chronic or recurrent states of intestinal inflammation without a 

clear etiology or pathophysiology. IBD precision medicine seeks to improve the disease 

stratification and timing of healthcare through biomarker identification and molecular 

characterization of disease-specific pathways using omics strategies. The aim of this dissertation 

is to apply IBD precision medicine using transcriptomics and metabonomics analyses to improve 

IBD diagnostics and molecularly characterize the inflammatory process, UC-associated mucosal 

dysplasia, and colonic mucosal wound healing with the ultimate goal of identifying potential 

novel therapeutic targets.  

This dissertation demonstrates that omics-based diagnostic IBD tests are not currently 

applicable because of insufficient sensitivity and specificity. However, the dissertation also 

demonstrates that this lack of sensitivity and specificity might be the consequence of a too 

simple phenotyping of IBD. Thus, the inflammatory process in pancolitis and UC-associated 

dysplasia are found to be molecularly distinct from those in left-sided UC and consequently 

should be considered unique subphenotypes needing tailored treatment strategies. To this end, 

the dissertation also provides potential treatment targets, some of which are currently being 

tested.  

Omics analyses also reveal the existence of quiescent UC as a distinct molecular phenotype 

at the metabonomics level. This challenges our current clinical treatment goal of mucosal 

healing, potentially raising the bar and forcing us to reach beyond to achieve molecular healing - 

that is, if it can be correlated with an improved clinical course of UC in future clinical studies.  
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To achieve molecular healing in the ulcerated intestines, mucosal wound healing is 

required. To be able to describe the kinetics and molecularly characterize the mucosal wound-

healing process, this dissertation applies a novel human in vivo colonic mucosal wound-healing 

assay. The model demonstrates the presence of a hyperresponsive innate immune system in the 

colonic mucosa of patients with UC in remission and a subsequent delayed wound healing that 

correlates with a distinct lipidomic trajectory. Dampening this hyperresponsiveness and 

promoting the healing process using lipid-based treatments represent innovative therapeutic 

avenues that need to be tested and validated. 

Serum metabonomics analyses identify a proatherogenic lipid profile in patients with 

active IBD, and as a consequence, the dissertation recommends that it is time for future IBD 

treatment algorithms to include advise on lifestyle interventions and statin treatment in young 

patients with frequent flares or chronically active disease.  

With this dissertation, I propose the existence of more detailed molecular phenotypes in 

IBD, the need for more ambitious treatment goals in terms of molecular healing, and novel 

wound-healing treatment strategies, which will all support the notion of precision medicine in 

IBD. 
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Summary in Danish 

Inflammatoriske tarmsygdomme (IBD) udgøres primært af colitis ulcerosa (UC) og Crohns 

sygdom (CD), som begge er livslange kroniske eller tilbagevendende tilstande af tarmbetændelse 

uden en klar ætiologi eller patofysiologi. Ved individualiseret IBD-behandling søges 

sygdomsstratificeringen og timingen af behandlingen forbedret via biomarkøridentifikation og 

molekylærbiologisk karakterisering af sygdomsspecifikke mekanismer ved hjælp af forskellige 

omics-strategier. Formålet med denne afhandling er at anvende individualiseret IBD-behandling 

via transkriptom- og metabonom-analyser for derved at forbedre IBD diagnostikken og 

molekylærbiologisk karakterisere den inflammatoriske proces, den UC-associeret 

slimhindedysplasi samt tyktarmsslimhindens sårhelingsproces med det ultimative mål at 

identificere potentielle nye terapeutiske behandlingsprincipper. 

Afhandlingen viser, at omics-baserede diagnostiske IBD-tests ikke synes anvendelige på 

grund af utilstrækkelig sensitivitet og specificitet. Den viser imidlertid også, at dette formentlig 

er konsekvensen af en utilstrækkelig fænotyping af IBD. Således findes den inflammatoriske 

proces ved pancolitis og UC-associeret dysplasi molekylærbiologisk signifikant forskellig fra 

venstresidig UC, og dermed bør disse betragtes som unikke underfænotyper, som kræver 

skræddersyede behandlingsstrategier. Til dette formål leverer afhandlingen også potentielle 

behandlingsmuligheder, hvor af en enkelt er under klinisk afprøvning. 

Omics-analyser identificerer også patienter med UC i remission som en særskilt 

molekylærbiologisk fænotype på metabonomics-niveau. Dette udfordrer vores nuværende 

kliniske behandlingsmål, som blot er slimhindeheling, idet det potentielt kan hæve barren for 

behandling såfremt molekylærbiologisk slimhindeheling kan korreleres til forbedring af det 

kliniske forløb af UC i fremtidige kliniske studier. 
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For at opnå molekylærbiologisk slimhindeheling i den inflammerede tarm er sårheling 

påkrævet. Med henblik på at kunne beskrive kinetikken og molekylærbiologisk karakterisere 

slimhindens sårhelingsprocessen anvender afhandlingen derfor en nyligt udviklet human in vivo 

sårhelingsmodel. Denne model demonstrerer tilstedeværelsen af et hyperresponsivt innat 

immunsystem i tyktarmsslimhinden blandt patienter med UC i remission og en efterfølgende 

forsinket sårheling, som korrelerer med specifikke lipidændringer. Hæmning af denne 

hyperresponsivitet og understøtning af helingsprocessen ved hjælp af lipidbaseret behandling 

repræsenterer innovative terapeutiske muligheder, som skal testes og valideres. 

Serum-baseret metabonomanalyser identificerede en proatherogen lipidprofil hos patienter 

med aktiv IBD, og som følge heraf anbefaler denne afhandling, at fremtidige IBD-

behandlingsalgoritmer, som noget nyt, bør omfatte rådgivning om livsstilsinterventioner og 

statinbehandling hos unge patienter med hyppig opblussen eller kronisk aktiv sygdom.  

Med denne afhandling foreslår jeg eksistensen af mere detaljerede molekylærbiologiske 

fænotyper ved IBD, behov for mere ambitiøse behandlingsmål med molekylærbiologisk heling 

og nye behandlingsstrategier for sårheling, hvilket samlet set vil understøtte individualiseret 

IBD-behandling.  



 11  

Abbreviations 

ANOVA  analysis of variance 

AOM/DSS  azoxymethane/dextran sulfate sodium 

AUC   area under the curve 

BCAA  branched chain amino acid 

CAGE  cap analysis of gene expression 

CD   Crohn’s disease 

CI   confidence interval 
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CRC   colorectal cancer 

eIF4E  eukaryotic initiation factor 4E  

FFPE   formalin-fixed paraffin-embedded 

FMT   fecal microbiome transplantation 

GWAS  genome-wide association study 
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HR   histologic remission 

IBD   inflammatory bowel disease 

IBDu   inflammatory bowel disease unclassified 

IECs   intestinal epithelial cells 

IFX   infliximab 

IL   interleukin 

INSRA  insulin receptor alpha 

IEC   intestinal epithelial cells  
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IOIBD  International Organization for the Study of IBD 

LPC/PC  lyso/phosphatidylcholine  

LPA/PA  lyso/phosphatidic acid 

MAPK  mitogen-activated protein kinase 

MES   Mayo endoscopic score 

MS/LC  mass spectrometry/liquid chromatography 

MKNK  MAP kinase interacting serine/threonine kinase 

NMR   nuclear magnetic resonance 

OPLS-DA  orthogonal partial-least-squares regression-discriminant analyses  

OR   odds ratio 

PBMCs  peripheral blood mononuclear cells 

PCA   principal component analysis 

PD-L1  programmed death ligand 1 

PE   phosphatidylethanolamine  

PG   phosphatidylglycerol  

PGD2   prostaglandin D2 

PGE1   prostaglandin E1 

PI   phosphatidylinositol  

PI3K   phosphatidylinositide 3-kinase 

PS   phosphatidylserine  

PSC   primary sclerosing cholangitis 

qPCR  quantitative polymerase chain reaction 

RIN   RNA integrity number 
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RT-PCR  real-time polymerase chain reaction 

RNA   ribonucleic acid 

SCCAI  simple clinical colitis activity index 

SCFA  short-chain fatty acid 

SES   simplified endoscopic score 

SIBDCS  Swiss IBD Cohort Study 

STRIDE  Selecting Therapeutic Targets in IBD 

SNP   single-nucleotide polymorphism 

TNF   tumor necrosis factor 

TH   transmural healing 

UC   ulcerative colitis 

UCEIS  ulcerative colitis endoscopic index score 

VOCs  volatile organic compounds 
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1. Introduction 

Ulcerative colitis (UC)1 and Crohn’s disease (CD)2 are the two main entities of inflammatory 

bowel disease (IBD), which is a lifelong chronic or recurrent state of intestinal inflammation 

with symptoms of bloody diarrhea, abdominal distress, and anorexia. The incidence of IBD is 

increasing worldwide, even though high-income countries seem to have reached a plateau in 

recent years.3 IBD is associated with significant healthcare costs, especially within the first year 

of the diagnosis, because of numerous diagnostic procedures, frequent hospitalizations, and 

treatment initiation with biologics.4 Furthermore, long-standing and extensive UC and CD 

localized to the colon have an approximately two- to threefold increased risk of colorectal cancer 

(CRC), with the highest incidence among patients with concomitant primary sclerosing 

cholangitis (PSC).5 Even IBD patients with a diverted rectum have a 10-fold increased risk of 

rectal cancer 10 years after colectomy.6 The etiology of IBD is still unknown but is believed to 

be the consequence of an imbalanced immunologic response to environmental and microbial 

components in genetically susceptible individuals.7  

UC is localized to the colonic mucosa and extends continuously from the rectum to include 

either the rectosigmoid, the left side of the colon, or more extensively past the left colonic 

flexure, whereas CD is a transmural segmental inflammation that can be localized anywhere in 

the gastrointestinal tract and may be complicated by strictures, fistulas, and/or abscesses. 

Although UC and CD share a range of characteristics, they are evidently two distinct diseases 

requiring exact diagnostics, differentiation, and phenotyping for tailored successful 

treatment.8 However, the diagnostic procedure is hampered by a multidisciplinary approach 

using biomarkers, radiology, endoscopy, and histology, which are all cumbersome, time 

consuming, and to some extent inefficient, because the approach leaves ~10% of patients with 
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the diagnosis of IBD unclassified (IBDu).9 After five years, this is only reduced to 7%, which 

potentially has serious clinical consequences because successful clinical management and the 

patient’s quality of life depend on early and correct diagnosis and, accordingly, subsequent 

treatment.10 

Regardless of the medical therapies applied, clinical response and remission rates are 

comparable between drugs and only reach approximately 60%, indicating that a therapeutic 

maximum has been reached with our current treatment regimens, and novel insight into the 

pathology of IBD and new treatment strategies are needed to overcome this therapeutic 

maximum. Among these strategies is precision medicine, an important concept that aims to 

improve stratification and timing of healthcare through biomarker identification and molecular 

characterization of disease-specific pathways by use of genomics, transcriptomics, proteomics, 

and metabonomics.11 This approach, however, is an extremely challenging task because the 

dissection of genotype-to-phenotype relations is not straightforward (Fig. 1). Genome-wide 

association studies (GWAS) have identified >240 loci containing IBD-associated variants, but 

IBD-associated single-

nucleotide polymorphisms 

(SNPs) explain a mere 15%–

20% of the disease 

phenotypes, and ~70% of 

IBD-associated SNPs are 

noncoding.12 Furthermore, 

integrative metabolome 

genome-wide analyses 

Modified from Bjerrum et al.134 

Figure 1 
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estimate that solely ~50% of total phenotypic differences at the metabolite level are due to 

genetic variance, however, with a significantly different heritability across metabolite classes.13 

In a recent IBD serum metabolome GWAS, 1292 metabolites were identified, of which 173 were 

acknowledged as genetically controlled metabolites, but only 17 were notated as being controlled 

by genetic variants in IBD risk loci.14  The actual phenotype is consequently the result of 

multiple downstream regulatory processes that take place from the genome to the metabolome 

and the concomitant interactions with the exposome and microbiome (Fig. 1), where the latter is 

increasingly recognized as a significant component of the actual pathogenesis15 as well as the 

risk profile of IBD.16  

Thus, the complexity of the network increases toward the metabolome, which is the entire 

set of both intermediates and end products of metabolism, that is, the life-sustaining chemical 

processes of the biological system. Accordingly, the metabolome is highly reflective of the 

actual (patho-) physiologic phenotype. With this acknowledgment alongside ongoing 

technological and bioinformatic advances, adult IBD omics research has focused more and more 

on the downstream 

“omes,” making IBD 

transcriptomics and 

especially IBD 

metabonomics studies 

(Fig. 2) increasingly 

relevant in precision 

medicine. 
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IBD Transcriptomics 

Transcriptomics aims to identify and quantify the complete set of RNA transcripts that are 

transcribed from the genome in a specific cell or biological system at a given time and under 

specific circumstances such as disease states or different treatments. As with any other omics, 

transcriptomics is descriptive by nature and consequently a hypothesis-generating tool. 

The initial IBD transcriptomics studies were published around the millennium and applied 

simple but at the time state-of-the-art microarray technology containing relative few 

transcripts.17–23 The studies were often characterized by inclusion of few study subjects, use of 

tissue from intestinal resections, and the need for pooled tissue samples. The first studies using 

unpooled pinch biopsies from well-characterized IBD cohorts and control subjects were 

performed by Castello et al.24 and Okahara et al.,25 whereas Burczynski et al.26 used peripheral 

blood mononuclear cells (PBMCs). These authors identified comprehensive sets of novel 

candidate transcripts not previously associated with IBD and provided new molecular insights 

into the pathophysiology of IBD but also underlined the polygenic and complex landscape of 

IBD. I27–34 and others35–59 have subsequently confirmed and elaborated significantly on the 

multifaceted polygenic nature and have correlated unique transcript profiles to UC or CD and 

subphenotypes, for example, active and quiescent disease, extend of disease, and IBD-associated 

CRC. These studies clearly demonstrate the diagnostic potential of IBD transcriptomics and the 

differential power to discriminate between UC and CD. They also demonstrate its limitations, 

because clinical use is compromised by the need for quite a substantial number of transcripts to 

achieve sufficient discriminative power, as illustrated by our most recent transcriptomics study,29 

which was performed as a multidisciplinary collaborative work between specialized research 

groups. Here a panel of 35 biomarkers was needed to reach an overall accuracy of 85% in an 
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external validation cohort of IBD patients with active disease. However, von Stein et 

al.60 identified a panel of only seven genes with a unique expression pattern in UC and CD that 

was able to correctly classify UC and CD in >92% of cases. This is the closest any biomarker 

panel has come to the accuracy of conventional clinical diagnosis of IBD, and the panel is 

currently commercially available as a patented DiBiCol test. Nevertheless, the reliability and 

clinical usefulness of this panel must be tested and prospectively validated in an independent 

cohort.61 

The molecular characterization achieved with IBD transcriptomics has also revealed the 

existence of a potential continuous inflammatory state in the colonic mucosa of patients with 

quiescent UC but not in CD. Wu et al.35 were the first to show that endoscopically unaffected 

intestinal pinch biopsies from patients with UC might be transcriptionally different from  

inflamed intestinal tissue, but also from that of healthy subjects. These unaffected or uninvolved 

biopsies originated from patients with active IBD (i.e., from a more proximal uninvolved colonic 

segment), which questions the actual status of “unaffected.” I27,28 and others41,56,62 have, 

however, subsequently verified the presence of a distinct colonic transcriptional profile in 

patients with clinical and endoscopically quiescent UC that offers a molecular stratification of 

patients with UC and, consequently, an opportunity to improve IBD therapy and maintain 

remission to prevent long-term disease progression.  

The Selecting Therapeutic Targets in IBD (STRIDE) initiative of the International 

Organization for the Study of IBD (IOIBD) has recently updated its proposed treatment targets 

for adult patients with IBD.63 It is recommended that endoscopic healing in both UC and CD 

should be a long-term therapeutic target, with a Mayo endoscopic score (MES) = 0 (previous 

recommendation 1) and a simple endoscopic score (SES) < 3, respectively. Despite ample 



 19  

evidence, histologic remission (HR)64 and transmural healing (TH), which we in our intestinal 

ultrasound research group65,66 and others67,68 have defined, are surprisingly not recommended as 

treatment targets in UC. However, if deeper layers of remission beyond HR and TH actually 

exist in terms of molecular remission at the omics level, for example, transcriptomics or maybe 

even metabonomics, then the opportunity exists to change the natural history of especially UC by 

setting the treatment targets in accordance with the molecular stratification.  

Importantly, this also might reduce the risk of UC-associated CRC, because a recent meta-

analysis demonstrates a pooled odds ratio (OR) of 2.6 (95% confidence interval [CI], 1.5–4.5; p 

= 0.01) in UC patients with histologic inflammation compared with no inflammation at all.69 It 

has been assumed that the neoplastic processes are inflammation driven and that the chronic 

inflammatory load is the central element in the increased risk of UC-associated CRC.70 Based on 

multiple epidemiologic studies, extensive UC or pancolitis is also repeatedly recognized as a 

prognostic risk factor for UC-associated CRC, but why the inflammation in pancolitis results in a 

higher risk of CRC compared with less extensive UC, that is, left-sided UC, is yet unknown.71 

One hypothesis is linked to the enhanced number of epithelial cells in the pancolitic mucosa 

exposed to carcinogenic insults. Alternatively, the inflammation per se may be more 

carcinogenic in the pancolitis mucosa, and if this is the case, yet another opportunity exists for 

the development of more rational and individualized treatments options for UC patients with 

pancolitis, thus supporting precision medicine.32  

 

IBD Metabonomics 

Metabonomics or metabolomics (terms often used interchangeably) is the study of metabolic 

changes in response to internal and external stimuli in an integrated biological system.72 
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Metabonomics aims to quantify the global dynamic metabolic response of living organisms to 

biological stimuli or disease perturbations, thus seeking to describe the systemic changes taking 

place through time in complex multicellular systems. 

An overview of currently available adult IBD metabonomics studies is presented by 

sample type in Tables I–V. Most of these studies, especially the early metabonomics studies, 

focus on IBD diagnosis, differentiation between UC and CD, and biomarker identification. 

Bezabeh at al.73 were the first to use metabonomics on colonic biopsies, and this research group 

differentiated between patients with active UC, active CD, and control individuals with a 

sensitivity and specificity ranging from 96% to 100%. When samples from patients with inactive 

IBD were validated using their classifier, only 82% could be categorized unambiguously, and 

42% of these, with the majority being patients with UC, were described as abnormal or inflamed 

despite endoscopically and histologically definite quiescent disease. I conducted a 

methodologically analogous study and differentiated active UC and healthy subjects based on 

their metabolic profiles, but 36% of endoscopically assessed inactive UC patients were 

categorized as inflamed.74 Sharma et al.75 used paired colonic biopsies from unaffected and 

affected tissue from the same patients with UC and demonstrated that the metabolic profile of 

apparently macroscopically normal tissue was indistinguishable from that of inflamed colonic 

mucosa. These observations suggest that the involvement of the colonic mucosa is far more 

extensive at the molecular level, and they indicate that the continuous inflammatory state 

described at the transcriptomics level of quiescent UC also may be present at the metabonomics 

level. 

Traditionally, the different omics approaches have been applied independently because of 

time-consuming and costly technologies. The development of relative low-cost and high-
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throughput analyses has advanced the use of multiomics, providing a systems biology approach 

or holistic view, the advent of which has been elegantly demonstrated, especially in recent 

metabologenomics studies.76 Here correlation of metagenomics and metabonomics enables large-

scale identification of gene clusters responsible for the biosynthesis of expressed metabolites 

delivering putative mechanistic associations,77–83 which can be further integrated using host 

omics to reveal parts of the integrate web of molecular interaction that characterize IBD 

phenotypes and subphenotypes.14,15,84 A similar integrative approach using both transcriptomics 

and metabonomics on colonic mucosal biopsies is expected to be highly synergistic and thus 

improve IBD diagnostics and the molecular characterization of clinically relevant phenotypes, 

including the proposed continuous inflammatory state in quiescent UC.33,34  

The major drawback of using colonic biopsies is the invasive endoscopic procedure needed 

to acquire the samples. Noninvasive testing is generally always preferred for diagnostics and 

surveillance of disease activity because of the higher degree of compliance and ultimately better 

disease control. Through minimally invasive sampling, breath volatomics,85–96 that is, detection 

of volatile organic compounds (VOCs), and urine metabonomics74,79,97–109 have to some extent 

shown that people with active IBD can be separated from healthy control subjects. However, in 

my previous metabonomics study, I was unable to differentiate between active UC, quiescent 

UC, and control subjects using urine metabonomics,74 and inconsistent results generally 

characterize the breath- and urine-based metabonomics studies attempting to differentiate 

between UC and CD. Stephens et al.106 found a clear difference in the urine metabolome of 

patients with UC and CD, but once corrected for confounding elements, such as by surgery and 

medication, the differential power was lost. Other studies have also tracked the metabolic 

changes taking place in urine during treatment to try and predict treatment response79 or 
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relapse97,109 but so far with limited success. Ding et al.79 found a bile acid profile and cysteine 

levels to be predictive of a response to anti–tumor necrosis factor (TNF) treatment in patients 

with CD, but with an area under the curve (AUC) of only 0.70 in both cases. Although breath 

and urine seem to be the ideal noninvasive biological sample types for diagnostics and 

prognostics, the results so far have been disappointing. By contrast, it is now well-established 

that the gut microbiome and host-derived metabolites are central elements in IBD,110 and as a 

consequence, the majority of the early metabonomics studies using metabolic profiles of fecal 

samples have consistently been able to differentiate between IBD and healthy control subjects, as 

well as between IBD subtypes.111–117 Substantiating these findings and further characterization of 

the fecal metabolome might make fecal metabonomics an extremely useful clinical diagnostic 

tool and may provide an opportunity to elaborate on the extreme complexity of the gut 

microbiome and fecal metabolites.118 

Although the microbiome-derived metabolome and fecal samples are getting increased 

attention, blood samples are thus far the most studied biofluid in IBD metabonomics (Table III). 

Serum and plasma samples are easy and convenient to collect and probably represent the obvious 

choice for biomarker identification in a clinical setting. However, the intestinal inflammation is 

not necessarily reflected in detectable changes in the blood; for example, patients with mild to 

moderate active UC often have a C-reactive protein (CRP) level within the normal range.119 

Some of the early studies, including my own,74,120 investigated the potential differences in 

isolated PBMCs as well as stimulated monocyte-derived macrophages in patients with quiescent 

or moderately active IBD versus healthy control subjects. As could be expected, these studies did 

not identify any differences in the metabolic profiles. Williams et al.,121 in contrast, demonstrated 

significant differences in the metabolic profile of serum in quiescent UC and CD as well as in 
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control subjects, with an AUC > 0.90 for all three models (e.g., UC vs. controls, CD vs. controls, 

and UC vs. CD). However, all subsequent nuclear magnetic resonance (NMR)-based studies 

have been unable to differentiate between UC and CD,105,107,122–125 although many of the 

metabolic perturbations have been affirmed in patients with active disease. No endoscopic 

evaluation or indirect measures of active IBD were provided (e.g., CRP or calprotectin) in the 

study by Williams et al.,121 which means that a potential presence of subclinical inflammation 

might explain the observed differences during clinically quiescent disease. This raises interesting 

questions regarding the metabolic trajectories during resolution of the inflammation: Are these 

identical or different in UC and CD; can they be used to define a serologic molecular state of 

quiescent disease, and/or can they potentially be used to predict treatment response?126 The latter 

is of great clinical and socioeconomic importance when treatment is prescribed with biologics 

such as infliximab (IFX). One-third of patients with IBD do not respond to IFX induction 

therapy at all,127 which might be explained by a completely different immunological drive or 

pharmacodynamics in these patients or that other processes than the inflammation are at play 

(e.g., compromised wound healing). Thus, predicting treatment response and characterizing the 

underlying mechanisms are the very essence of precision medicine.126 

In this respect, it has become evident that one of the main risk factors for ongoing disease 

activity in spite of anti-inflammatory treatment is sustained wound formation and that 

several anti-inflammatory strategies actually may impair vital pathways involved in mucosal 

tissue regeneration.128 Other mechanisms than inflammation consequently seem to be in play, but 

our understanding of the normal and pathologic responses to intestinal mucosal injury and 

subsequent healing in vivo in humans is still poorly understood.129 Research on wound healing in 

the healthy colon and in patients with UC is consequently critical in order to identify potential 
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therapeutic targets that could modify the disease course through promotion of tissue regeneration 

and bring us closer to even higher overall response rates than the ones seen with the current anti-

inflammatory treatment strategy. I have recently demonstrated that patients with quiescent UC 

respond to mucosal breaks by an innate hyperresponse engaging resident regulatory cells and a 

subsequent adaptive activation when compared with healthy control subjects.130 Inspired by the 

Segal team,131 I participated in the development of a human in vivo model for the study of flare 

initiation, but the model is also applicable as a subsequent wound-healing assay,132 which we 

consider to be of significant importance because all other studies on colonic mucosal healing 

have been performed in vitro or in animal colitis models.130 The most recent animal models on 

wound-healing have focused on lipidomics133 - a subset of the metabolome that is generally 

receiving increased attention in IBD metabonomics research.134 These studies have shown that 

eicosanoids and phospholipids are vital elements in the various stages of wound-healing and that 

they display 

an omnipresent and 

surprisingly complex 

bioactivity providing 

promising treatment 

targets in animal 

colitis135,136 and human 

studies137 (Fig. 3).  

 

Disease specific 
lipidomic 
dysregulation 

Human in vivo colonic mucosal wound healing 
  
 
 

 

 

Figure 3 

Abstract figure from Bjerrum et al.132 
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Aims 

The overarching aim of the dissertation and included studies is to support the notion of precision 

medicine in IBD. This is achieved by transcriptomics and metabonomics analyses of disease-

relevant sample types, that is, colonic and wound biopsies, feces, and blood. With such 

techniques I try to improve IBD diagnostics, differentiate between UC and CD during both 

active and quiescent disease, and to molecularly characterize the phenotypes in relation to the 

inflammatory process, dysplasia, and wound-healing - with the ultimate goal of identifying 

potential novel therapeutic avenues. 

 

2. Materials and Methods 

Patient Population and Healthy Volunteers 

All patients with IBD were recruited from the Department of Gastroenterology, Herlev Hospital, 

University of Copenhagen, Denmark, except for one study32 where samples partly originated 

from the Swiss IBD Cohort Study (SIBDCS). Only patients with an affirmed diagnosis of UC or 

CD established according to well-established criteria1,2 were included. All patients with IBDu,9 a 

subsequent diagnosis of microscopic colitis or coexistence thereof, or infectious colitis were 

excluded. Furthermore, in the case of a discrepancy between the colonoscopy and histology (e.g., 

normal macroscopic colonoscopy but inflamed by histology in patients with an otherwise 

affirmed IBD diagnosis), the patient was excluded to avoid any misclassification of disease 

activity status. 

Clinically, the disease activity was assessed using the Mayo score138 (Mayo scores of 0–1, 

inactive UC; 2–4, mild UC; 5–8, moderate UC, and 9–12, severe UC) or the Harvey–Bradshaw 

(HB) score139 (HB scores of 0–4, inactive CD; 5–8, mild CD; 9–16, moderate CD; and >16, 
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severe CD). In studies using tissue samples,32–34,61,132 the clinical scores were correlated with 

endoscopic activity scores (Mayo endoscopic score for UC138 and the simplified endoscopic 

score for CD [SES-CD]140) and histologic scores.141–143 Thus, patients classified as having 

quiescent disease were in complete endoscopic and histologic remission (e.g., Mayo endoscopic 

score = 0 and Geboes score < 0.1142 for patients with UC in remission). Similarly, none of the 

included control subjects had any signs of endoscopic or histologic inflammation. These 

individuals were undergoing colonoscopy because of gastrointestinal symptoms, but all clinical 

investigations turned out to be normal. Patients and control subjects were not matched for age or 

gender. 

Exclusion criteria included age <18 years or >70–80 years (depending on the 

study); clinical evidence of any infections; recent (within 14 days) use of antibiotics or 

probiotics; pregnancy or lactation; severe mental illness that would affect decision making; 

special food regimens such as a diet with low content of fermentable oligosaccharides, 

disaccharides, monosaccharides, and polyols; and a diabetic or gluten-free diet. Ongoing 

maintenance treatment was typically allowed with 5-aminosalicylic acid, immunomodulators 

(e.g., azathioprine, mercaptopurine, or methotrexate), and biologics on a stable dosing minimum 

two months prior to inclusion.  

 

Sampling and the Human In Vivo Wound-Healing Model 

All fecal samples,118 blood samples,126 and colonic biopsies32–34,61,132 were collected 

prospectively, as described previously. In brief, fecal samples were placed in a sealed insulated 

container, immediately put on ice, and stored at –80°C. Within 3 hours of sampling, the serum 

was collected after centrifugation (2500×g for 5 minutes at ambient temperature) and stored at 
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 –80°C.  

Colonic mucosal pinch biopsies were obtained during endoscopy from the left side of the 

colon in each patient using routine endoscopic forceps. The left side was explicitly preferred to 

avoid any intersegmental variation in the transcriptome or metabolome and because this is the 

most frequent area of inflammation in patients with UC. The biopsies were immediately 

stabilized in RNAlater (Ambion, Austin, TX) or snap frozen in liquid nitrogen and stored at  

–80°C for subsequent transcriptomics or metabonomics analyses, respectively. Adjacent 

biopsies were used for histopathologic evaluation. In one study colonic biopsies also originating 

from a biobank in the SIBDCS collected and stored in a similar fashion to the above-described 

procedure.144 

To study the kinetics and molecular dynamics of acute colonic mucosal injury and the 

subsequent healing process, the previously mentioned human wound-healing assay and 

concomitant wound scores were utilized.130,132 In short, index wounds were generated in the 

rectosigmoid colon of healthy subjects and patients with UC using a biopsy forceps (Radial Jaw 

4, 2.8 mm, Boston 

Scientific, Marlborough, 

MA). The wound-healing 

processes were 

documented and scored by 

successive macroscopic 

high-definition imaging 

via a standard endoscope 

at given predefined 
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temperature was maintained at 40 ºC. The capillary 
voltage was set at 2.5 kV, source temperature at 150 
ºC, and a desolvation gas flow rate of 1000 l/hour at 
600 ºC.  

For internal standards, chemicals, and 
quantification analysis please see Supplementary 
material. 

Data analysis  

Univariate analysis 
All continuous variables, i.e., wound score, 

Geboes score, biopsy weight, and lipids, were 
analyzed with nonparametric statistics using 
GraphPad Prism (v9.0.0, GraphPad, San Diego, CA, 
USA) and data presented as medians with 
interquartile ranges. The Mann-Whitney and 
Wilcoxon tests were applied when relevant with a 
significant level of p<0.05. A false discovery rate 
(FDR) below 5% was used for correction of multiple 
testing. 

Multivariate data analysis 
Multivariate statistical analyses were initiated 

with principal component analysis (PCA) to visualize 

the general structure of the mean centered data set 
and to identify any abnormalities or outliers (based on 
the principals of Hotelling´s T2) using SIMCA-P+ 
(v12.0, Umetrics, Umeå, Sweden). Class-belongings, 
i.e., control or UC day zero, two, or seven, and 
variables, were characterized by supervised models 
using the orthogonal partial least squares 
discriminant analysis (OPLS-DA) on data scaled to 
unit variance (UV). The models were validated with a 
seven-fold cross validation and permutation tests (200 
permutations). The significance of the OPLS-DA 
models was additionally validated by the analysis of 
variance of the cross-validated residuals 
(CV-ANOVA), and a p-value < 0.05 indicated a valid 
model. The models were considered valid only if the 
permutation test and the CV-ANOVA test were 
satisfied at the same time. Variables holding strong 
differential power in the models were identified with 
the use of correlation coefficients. Similarly, 
correlation analyses and validations were performed 
between the colonic mucosal wound scores and 
phospholipids and eicosanoids, respectively. All data 
are deposited at MetaboLights. 

 

 
Figure 1. The wound healing model. A and B) illustrative presentation of the model. C) The colonic mucosal composite wound healing score ranges from 1-5 with two 
variables: 1) a regeneration score ranging from 1-3 and 2) an inflammation score of 1 or 2 - a high wound score correlates with impaired wound healing, e.g. a, wound score 5 
with no fibrin coverage (3 points), marked peripheral hyperemia (1 point) and edema (1 point), thus representing delayed wound healing, and b; wound score 2 with complete 
fibrin coverage (1 point) and edema (1 point) representing timely wound healing. 

Figure 4 

Figure 1 from Bjerrum et al.132 
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postwounding time points. Subsequent molecular characterization was made possible by 

obtaining biopsies across the index wounds with the use of a biopsy forceps angled 90 degrees to 

the initial index wounds (Fig. 4). Based on previous experience from skin-excision wound 

models,145 a scoring system was developed evaluating barrier breach exudate appearance and 

signs of inflammation (i.e., peripheral edema and erythema) and wound-healing (i.e., closure of 

the defect). The model consequently allowed a description of the kinetics of the initial injury and 

subsequent wound-healing in normal and diseased human colonic mucosa on both the 

macroscopic and molecular levels.  

 

Transcriptomics Analyses 

RNA extraction from colonic mucosal biopsies was performed identically in all studies using the 

NucleoSpin RNA/Protein Mini Kit (Macherey-Nagel, Düren, Germany) and in the case of 

formalin-fixed paraffin-embedded (FFPE) biopsies with the RNeasy FFPE Kit (Qiagen, Hilden, 

Germany) applied in accordance with the manufacturers’ protocols. Integrity and purity were 

verified with an Agilent Bioanalyzer (Agilent, Palo Alto, CA), and only RNA integrity numbers 

(RIN) > 7 were accepted, except for the FFPE biopsies, where RIN values are inherently low.  

At the time of the initiation of these studies, state-of-the-art transcriptome-wide analysis 

was performed using microarray technology simultaneously measuring the expression levels of 

thousands of RNA transcripts. Thus, in these experiments performed at the Centre for Genomic 

Medicine, Rigshospitalet, Copenhagen, Denmark, the Affymetrix GeneChip Human Genome 

U133 Plus 2.0 was applied, containing more than 47,000 transcripts. This method was fast and 

affordable, but the obvious disadvantage compared with current technologies, such as RNA 

sequencing or cap analysis of gene expression (CAGE), used in my more recent IBD 
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transcriptomics studies29,130 is the limited number of transcripts because only known transcripts 

are applied to the array. Array technology also has a smaller dynamic range because 

hybridization is limited by background noise at the low end and signal saturation at the high end, 

and finally, it has a relative low sensitivity and specificity due to small detection rates of 

differentially low expressed genes and of rare and low-abundance transcripts. 

Subsequent validation of the array analyses was performed with quantitative real-time 

polymerase chain reaction (RT-PCR), and protein expression was investigated by 

immunohistochemistry. 

 

Metabonomics Analyses 

Metabolic profiles were generated from colonic mucosal biopsies,33,34 fecal samples,118 and 

blood samples,126 using 1H NMR spectroscopy as the preferred approach. High-resolution NMR 

spectroscopy quantifies the metabolites in an untargeted approach and simultaneously carries 

molecular structural information that allows identification of the metabolites. Furthermore, 

NMR-based metabonomics is a robust and reliable technique with high reproducibility, minimal 

sample preparation, low running costs, and high throughput; is nondestructive; and, importantly, 

the only technique capable of analyzing intact tissue. However, NMR spectroscopy has a low 

intrinsic sensitivity and heavy signal overlap, limiting the number of metabolites that can be 

detected. This has to be acknowledged when interpreting NMR-based metabonomics.  

In my most recent metabonomics study based on intestinal wound biopsies,132 I used 

another commonly applied technology for metabolic profiling, namely mass spectrometry (MS) 

coupled with the separation technique liquid chromatography (LC), as a targeted approach to 

characterize the metabolic trajectory during wound healing in the colonic mucosa of healthy 
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subjects and patients with UC. The targeted approach selectively quantifies specific metabolites, 

in this case lipids, which requires the addition of internal standards for identification and 

quantification purposes. The advantage of this approach is that the MS conditions can be 

optimized for ideal separation and detection, resulting in identification of metabolites in the 

picomole range with a superior sensitivity to NMR-based metabonomics. However, the 

technique requires a priori knowledge and valid hypotheses regarding the samples of interest, 

and more care should be taken when conducting MS experiments because the reproducibility of 

MS is intrinsically low and quality control strategies are necessary to obtain reproducible results. 

It is consequently essential to acknowledge the limitations of metabonomics because none of the 

existing technologies can identify the entire metabolome. Moreover, the metabolome is an ever-

changing and dynamic structure due to the continuous influence of upstream omics and the 

environment. Thus, the results from metabonomics studies consequently need to be interpreted 

under these conditions and with caution.134 

 

3. Results and Discussion 

IBD Diagnostics and Differentiation of UC and CD 

Intestinal Transcriptomics 

The need for novel, reliable, and clinically suitable methods for diagnosing IBD is evident, and a 

diagnostic model based on the expression pattern of a limited number of genes would be an ideal 

tool, as suggested by von Stein et al.60 Their diagnostic DiBiCol test was independently 

investigated in a subsequent Swedish study including 38 probable cases of UC, 18 probable 

cases of CD, and 22 cases of IBDu.146 Using DiBiCol as the “gold standard” test, sensitivity and 

specificity for the clinical diagnosis were found to be 77% and 66% and 89% and 92% for UC 
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and CD, respectively. However, because the final diagnosis was reached by including the results 

from the DiBiCol test, this raises the question of confounding by diagnosis. Furthermore, the 

study was performed in an unblinded fashion. In a more recent Swedish retrospective analysis of 

the clinical application of the DiBiCol test on a real-world data set, the sensitivity and specificity 

of the test were found to be 97% and 92% for UC and 78% and 88% for CD.147 However, in a 

subset of these retrospectively collected patients, duplicate colonic biopsies were taken at the 

same time in 300 patients, and in 1 of every 5 patients the test result was different between the 

two biopsies.  

To validate this seven-gene model in a prospective Danish cohort, I included 119 patients 

with IBD and divided them into a training cohort (n = 58) and a test cohort (n = 61) to assess the 

differences in phenotype, for example, age, disease
activity or use of medication (except AZA) between
the sets (Table 1), the possibility that these factors
could constitute confounders cannot be excluded.
Phenotypic as well as methodological differences
might also explain the inconsistency between the
results of the current study and those of von Stein
et al. Thus, in this study, the biopsies were
obtained exclusively from the left side of the colon
avoiding major intersegmental gene expression
variation, whereas the origin of the samples is not
clearly stated in the previous report [17]. Similarly,
it is difficult to gain insight into the methods of
handling and storing the biopsies and the accepted
level of RNA quality (RIN value) [17], which may
affect the final results. However, it is clear that RNA
extraction has been performed with different com-
mercially available RNA Isolation Kits here and in
the previous study [17], that is, the mirVana Total
RNA Isolation Kit (Ambion) versus the RNeasy Mini
Kit (Qiagen) and GenElute Mammalian Total RNA
Miniprep Kit (Sigma–Aldrich), respectively.

Previous studies on the selected genes are limited
[32–38], but essentially none of the seven genes

has been related to disease-specific activity in UC
or CD, other than as part of an inflammatory and/
or healing response, which further explains why
the seven-gene panel failed to accurately classify
the CD and UC samples. Recently, based on the
seven-gene model, the diagnostic test DiBiCol was
investigated in an independent study of 78
patients. The patient cohort consisted of 38 prob-
able cases of UC, 18 probable cases of CD and 22
cases of IBDU, all with a complicated course and
an uncertain diagnosis. Using DiBiCol as the ‘gold
standard’ test, sensitivity/specificity for clinical
classification was found to be 77/66% and 89/
92% for UC and CD, respectively [39]. However, the
study was not blinded, and the final diagnosis was
made taking into consideration all clinical data as
well as test results from the DiBiCol test, which
raises the possibility of confounding by diagnosis.
Accordingly, these results should be interpreted
with caution, and no definite conclusions can be
made.

In summary, the findings of this study confirm that
the panel of seven specific genes identified by von
Stein et al. [17] is able to distinguish control

Table 4 Sensitivity, specificity and AUC

Von Stein et al. [17] Von Stein et al. [17]

Present study Retrospective study Prospective study

UC (n = 21) UC (n = 33) UC (n = 38)

Non-UC (n = 40) Non-UC (n = 110) Non-UC (n = 48)

CD (n = 20) CD (n = 22) CD (n = 28)

Non-CD (n = 41) Non-CD (n = 121) Non-CD (n = 58)

IBD (n = 41) IBD (n = 55) IBD (n = 75)

Non-IBD (n = 20) Non-IBD (n = 88) Non-IBD (n = 20)

Sensitivity (UC vs. non-UC) 43% (22–66%) 88% 90%

Specificity (UC vs. non-UC) 83% (67–93%) 99% 86%

AUC (UC vs. non-UC) 0.82 (0.71–0.93) 0.98 0.94

Sensitivity (CD vs. non-CD) 60% (36–81%) 70% 68%

Specificity (CD vs. non-CD) 68% (52–82%) 98% 92%

AUC (CD vs. non-CD) 0.71 (0.55–0.87) 0.96 0.92

Sensitivity (IBD vs. non-IBD) 95% (83–99%) 85% 95%

Specificity (IBD vs. non-IBD) 90% (68–99%) 94% 95%

AUC (IBD vs. non-IBD) 0.92 (0.84–1.00) 0.95 1.00

Sensitivity, specificity and area under the curve (AUC) from the two studies. The von Stein study [17] is composed of three
substudies: a pilot study used to evaluate the potential of the seven genes as a diagnostic tool, a retrospective study used
as validation, and finally a prospective study used for confirmation. The results of the retrospective and prospective
studies are presented here. Values for this study are given with 95% confidence intervals in parentheses. CD, Crohn’s
disease; UC, ulcerative colitis. Note that the non-UC group contains both CD and non-IBD controls, and the non-CD group
contains both UC and non-IBD controls.

J. T. Bjerrum et al. Multigene analysis for IBD

ª 2013 The Association for the Publication of the Journal of Internal Medicine 491

Journal of Internal Medicine, 2014, 275; 484–493

Tabel 1 

Sensitivity, specificity and area under the curve (AUC) from the two studies. The von Stein study is composed of 
three sub-studies: a pilot study used to evaluate the potential of the seven genes as a diagnostic tool, a retrospective 
study used as validation, and finally a prospective study used for confirmation. The results of the retrospective and 
prospective studies are presented here. Values for this study are given with 95% confidence intervals in parentheses. 
CD, Crohn’s disease; UC, ulcerative colitis. Note that the non-UC group contains both CD and non-IBD controls, 
and the non-CD group contains both UC and non-IBD controls.  

Table 1 from Bjerrum et al.61 
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reliability and clinical usefulness of this tool.61 The resulting gene expression pattern of the seven 

genes was identical to the one found by von Stein et al.60 except for RegIV, but the subsequent 

classification of the test cohort with or without RegIV resulted in high misclassification rates and 

consequently a low sensitivity and specificity (Table 1). The seven-gene panel does distinguish 

patients with IBD from healthy control subjects, but the differential power with respect to CD 

versus UC was found to be inadequate for diagnostic purposes, and the results indicate that the 

genes merely reflect nonspecific inflammation rather than specific markers of IBD. 

For comparison, the classifying power of a previously identified gene expression panel by 

Olsen et al.27 and the gene expression markers from von Stein et al.60 were tested in our most 

recent transcriptomics CAGE data set.29 The expression of these genes were measured by 

summing CAGE tags across corresponding gene models in the CAGE cohort and trained and 

evaluated by a random forest model for each gene set using a fivefold cross-validation system 

iteratively 1000 times to ensure stable results. For comparison, the same analysis was made on 

(1) the initial 274 CAGE-defined markers, (2) the 161 Fluidigm targets, measured by 

quantitative (q)PCR, and (3) the final 35 Fluidigm targets measured by qPCR. The average 

accuracy, sensitivity, and specificity are shown in Figure 5 for each group (CDa: active CD; 

Supplementary Figure 9 page 2

c. Validation of the prediction method in an independent cohort using xgboost 
Panels and analysis as in Fig 7d: analysis is identical but using XGboost instead of Random forest 
as a prediction framework. 
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UCa: active UC; Ctrl: healthy control individuals) as bar plots along with the overall accuracy. 

The seven-gene panel performed consistently worse than the CAGE data. 

 Recent large meta-analyses of previously published gene expression studies on colonic 

mucosa from patients with IBD demonstrate an overall lack of significant differences between 

CD and UC,48,52 which to some extent is also confirmed by more up-to-date transcriptomics 

studies.44,46 These results, altogether, show the difficulties encountered in efforts to reduce the 

complexity of IBD into a comprehensive and clinically applicable seven-gene panel.61 

 

Fecal Metabonomics 

Therefore, I took a completely different approach and collected stool samples from 113 

individuals - 48 patients with UC (19 active, 29 inactive), 44 patients with CD (13 active,  

31 inactive), and 21 healthy control subjects - and analyzed the fecal water extracts with NMR 

spectroscopy.118 The initial results indicated that IBD patients and healthy control subjects were 

easily separated based on fecal metabonomics, but no differences between UC and CD were 

demonstrated. Furthermore, excluding patients who have had intestinal surgery, which coincided 

with anti-TNF- treated patients, 

resulted in an extremely poor 

differential potential because 

only active UC was found to be 

distinct from inactive UC and 

healthy control subjects and with 

corresponding predictive 

capabilities  (Table 2, Fig 6).118  

of other amino acids (i.e. lysine, alanine, tyrosine, phen-

ylalanine, and glycine, Table 3A) in the samples from
patients with active CD and UC when compared to con-

trols, but these metabolites were without significance when

active CD and active UC were compared (Table 2A). Once
corrected for surgery (and TNF-a inhibitor treatment) the

higher abundance of BCAA, lysine, alanine, and taurine

remained evident only for active UC compare to inactive
UC and control subjects, respectively (Table 3B).

The larger amount of amino acids in active UC might
very well be due to malabsorption caused by the inflam-

mation, whereas the low levels of the short chain fatty

acids (SCFAs), butyrate and propionate, seem to be the
consequence of an inflammation-driven intestinal dysbio-

sis. Thus, a range of recent culture-independent studies

repeatedly identify Faecalibacterium prausnitzii in lower
abundance in CD (Swidsinski et al. 2009; Frank et al. 2007;

Martinez-Medina et al. 2006; Sokol et al. 2008), whereas

Clostridium coccoides has been found reduced primarily in
UC (Sokol et al. 2006; Vermeiren et al. 2012). These

species are important participants in the bacterial fermen-

tation of polysaccharides and consequently the production
of SCFAs. Usually SCFAs are produced in large amounts

reaching millimolar concentrations in the colonic lumen

from which they are absorbed (Topping and Clifton 2001).
Especially butyrate is a preferred energy source for the

colonocytes (Chapman et al. 1994) and exhibits, along with

propionate, a well documented anti-inflammatory capacity
through an inhibitory effect on TNF-a-mediated activation

of the nuclear factor (NF)-jB pathway (Tedelind et al.

2007; Segain et al. 2000). Adding insult to injury, defects
in butyrate transport across the epithelium and in the

butyrate oxidation pathway exist during inflammation in

both CD (De Preter et al. 2013) and UC (De Preter et al.
2009; Thibault et al. 2010). Thus, low levels of SCFAs

seem to be the consequence of an inflammation-driven

dysbiosis, but low levels of SCFAs by it self promote

sustained inflammation and thereby induce an uncontrolled

spiral of chronic inflammation and dysbiosis in both CD
and UC. Lactate on the other hand, is in the current study

only found in greater abundance in active UC—a result that

parallels previous studies (Hove et al. 1994; Vernia et al.
1988). Usually, lactate is not detected as a major fermen-

tation product, which is assumed to reflect the presence of

lactate-utilizing bacterial species in the microbiota of a
healthy gut (Duncan et al. 2004). Interestingly, some of the

recently identified bacterial groups of lactate-utilizing
bacteria in the human gut (i.e. E. hallii and A. caccae)

(Duncan et al. 2004) belong to the clostridial cluster XIVa,

to which C. coccoides also belong. Consequently, C. coc-
coides (lower quantity in UC) might very well represent

lactate-utilizing butyrate-producing bacteria, which could

explain the low levels of SCFAs and greater abundance of
lactate seen in active UC. In contrast, F. prausnitzii (lower

quantity in CD) is not using lactate in its production of

butyrate (Duncan et al. 2004), and no lactate increase is
detected in the samples from active CD. Hence, the met-

abolic profiles found in the fecal samples from active UC

patients consequently match the dysbiosis described by
previous studies, and the results from the current study

might accordingly be interpreted as a metabolic charac-

terization of the predominant dysbiosis in active UC.
However, the results in general need to be interpreted in

light of potential confounding factors, such as the systemic

effect of medication and changed dietary strategies during
active and inactive disease, which was not accounted for in

the current study.

In conclusion, 1H NMR spectroscopy-based metabo-
nomics on fecal extracts from IBD patients has proven to

be a potentially powerful non-invasive diagnostic tool and

able to characterize the inflammation-driven changes in the
metabolic profiles related to malabsorption and a dysbiosis

of the normal bacterial ecology. However, the study also

highlights the fact that even minor intestinal surgery, anti-
TNF-a antibody treatment, overlapping drug resonances,

and medication in general are to be accounted for in future

studies as these impose significant confounding factors;
even though it is difficult, fecal samples need to be

obtained from newly diagnosed and consequently untreated

patients, and analyzed with complementary analytical
technologies if we are ever to test the true potential of

metabonomics as a diagnostic tool in IBD.
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Table 4 Predictive capability of the models

Models corrected for surgery Area under
the curve

Active UC vs. inactive UC 0.813 Good

Active UC vs. controls 0.876 Good

Inactive UC vs. controls 0.654 Poor

Active UC vs. active CD 0.693 Poor

Inactive UC vs. inactive CD 0.659 Poor

Active CD vs. inactive CD 0.529 Poor

Active CD vs. controls 0.667 Poor

Inactive CD vs. controls 0.726 Fair

Prediction performance estimates presented as area under the curve
(AUC) for each model
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Today we know that the diversity of the microbiome and metabolome is reduced in 

patients with IBD who have been subjected to intestinal surgery.81 However, at the time, these 

results were surprising because the first-ever metabonomics study based on fecal samples and 

NMR spectroscopy by Marchesi et al.112 differentiated between patients with active UC, active 

CD, and healthy control subjects. This initial study was methodologically similar to study V 

except that all patients with IBD received treatment with prednisolone (40 mg/day) and 5-

aminosalicylic acid (0.8–1.6 g/day) in their study. The metabolites holding differential power 

were primarily increased levels of branched-chain amino acids (BCAAs) in CD (i.e., isoleucine, 

seems to have a significant impact on the fecal

metabolome.
To further elaborate on the effect of surgery and medi-

cation subsequent predictive models of surgery versus no

surgery within each disease phenotype, i.e. inactive CD,
active CD, and inactive UC, and between different sub-

classes of inactive CD (supplementary material 4) were

created. Surprisingly, none of these models were valid.
This either indicates that an even larger cohort of patients

is needed to improve the differential power or signifies an

inherent weakness in the current approach: overlapping
drug resonances, which often leads to the exclusion of large

spectral regions and thus potential vital metabolites holding

differential power—or both. Formate, fumerate, phenylal-
anine, and tyrosine were identified in the excluded spectral

regions in the current study as potential informative and

predictive metabolites.
Recent studies have characterized the fecal metabolome

of different gastrointestinal disorders such as IBD, IBS and

colorectal cancer using mass spectrometry (MS) usually

combined with gas or liquid chromatography (Ahmed et al.

2013; Garner et al. 2007; Duboc et al. 2013). MS generally
exhibits better sensitivity, selectivity and a broader

dynamic range compared to NMR, but often requires pre-

treatment of the samples introducing additional sources of
variability to the metabonomics data. Thus, to overcome

problems with overlapping drug resonances and generally

improve the metabonomics data a combination of different
analytical technologies, e.g. NMR and MS, is needed so as

to obtain a better coverage of the metabolites and differ-

ential power.
The results of the current study are in contrast to Mar-

chesi et al. (2007) who used the exact same methodology

and were able to differentiate not only between active IBD
and controls, but also between active CD and active UC.

The metabolites holding differential power in the Marchesi

study (active CD vs. active UC) were primarily branched
chain amino acids (BCAA; isoleucine, leucine, and valine)

found in greater abundance in CD samples. The present

study also found greater abundance of BCAA and a range

Fig. 2 OPLS-DA score plots of patients without intestinal surgery.
The score plots (a and b) are based on the two valid models
containing only patients without intestinal surgery and display the 1st
PLS component and one orthogonal component for each model. A
two-way separation of the fecal samples is demonstrated in both plots.
Blue squares inactive UC; purple stars active UC; green triangles
controls. The corresponding back-scaled loading plots reflect the class
differences in the NMR spectra. Upright peaks indicate a relatively
increased intensity of metabolites, and downright peaks a decreased
intensity of metabolites. The colors shown on the plot are associated

with the significance of metabolites in separating the samples as
shown on the right hand side of the plot, where the color-scaling map
is given together with the respective correlation coefficients in
accordance with the sample number in each group and a significance
level of p \ 0.05, the metabolites are significant at correlation
coefficient values above a 0.44 and b 0.44, respectively. UC
ulcerative colitis; ala alanine; buty butyrate; ileu isoleucine; lac
lactate; leu leucine; lys lysine; prop proprionate; tau taurine; val
valine (Color figure online)
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decreased intensity. The colors shown on the plot are associated with the significance (above a 0.44) of 
metabolites in separating the samples. ala alanine; buty butyrate; ileu isoleucine; lac lactate; leu leucine; lys 
lysine; prop proprionate; tau taurine; val valine. 
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leucine, and valine), reduced short-chain fatty acids (SCFAs) in CD (i.e., butyrate and acetate) 

and UC (i.e., butyrate only), and reduced tri/methylamine in both CD and UC. These findings 

were initially confirmed in my study, but after correction for surgery and medication, only a 

higher abundance of BCAAs (lysine, alanine, taurine, and lactate) and low levels of SCFAs 

(propionate and butyrate) remained in patients with flaring UC. The large number of amino acids 

observed in active disease in the two studies can be explained by malabsorption caused by the 

inflammation, whereas the low levels of SCFAs seem to be the consequence of an inflammation-

driven intestinal dysbiosis.  

Elegantly designed and executed metabologenomics studies15,77,80,82,116,148–151 have 

demonstrated reduced biodiversity and dysbiosis in IBD and identified, among others, 

Faecalibacterium prausnitzii and Clostridium coccoides in a lower abundance in IBD. These 

species are important participants in the bacterial fermentation of polysaccharides and, 

consequently, in the production of SCFAs. Usually SCFAs are produced in large amounts in the 

colon and absorbed because especially butyrate is a preferred energy source for colonocytes, and 

along with propionate, it exhibits anti-inflammatory characteristics.152 Thus the dysbiosis 

resulting in low levels of SCFAs becomes a self-promoting vicious spiral leading to chronic 

inflammation.  

A double-blinded randomized, controlled trial used the probiotic inulin to treat patients 

with active and quiescent CD and healthy control subjects.153 Patients receiving inulin had a 

subsequent significant increase in butyrate and acetaldehyde, but whether these changes were of 

clinical significance is not disclosed. Other studies117,154 have also employed gas 

chromatography-mass spectrometry (GC/MS) but reached completely diametral results, with 

increased levels of SCFAs, including butyrate, in active CD. During standard medication in 
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active CD, these levels, however, decreased and normalized in comparison with control 

individuals, but no differences in the volatile metabolites could be identified between patients 

with active UC and irritable bowel syndrome (IBS) and control subjects.117 Similarly, enteral 

feeding leads to a significant reduction in SCFAs and the disease activity, as scored by the HB 

index.154 A few other GC/MS-based metabonomics studies113,155 have also found changes in 

SCFAs and their derivatives, but whereas one study113 could use this to differentiate between 

patients with UC and infectious colitis and control subjects, another study71 observed a less 

distinct separation between patients with active UC and quiescent UC and control subjects. The 

reason for these opposing findings, especially in GC- and GC/MS-based studies, is unclear, but 

they highlight the importance of an exact description and validation of the technological 

approach156 and characterization of the cohorts under investigation with respect to demographics 

and clinical features (e.g. surgery, medications, diet, smoking, etc.) when performing 

metabonomics studies. Nevertheless, the results have animated medical trials with supportive 

local treatment of colitis using SCFA enemas, which were investigated for the first time 30 years 

ago.157 Perhaps not so surprising, the outcomes were somewhat disappointing, although SCFAs 

actually seem to ameliorate the inflammation, but they might at the same time impede the 

wound-healing process.158  

SCFAs, together with a well-described bile acid dysmetabolism,77,79,111,114,116,148,159 in IBD 

also seem to predict response to both fecal microbiome transplantation (FMT) and anti-TNF 

treatment.134  

Thus, IBD metabonomics based on fecal samples has been unable to provide the desired 

diagnostic accuracy in differentiating UC and CD, especially when confounding factors, such as 

the systemic effect of medication and even minor intestinal surgery, are considered. 
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Serum Metabonomics 

In my longitudinal cohort study of NMR spectroscopy–based metabolic profiling of serum from 

patients with IBD treated with IFX, I included successive serum samples collected during IFX 

induction treatment (i.e., weeks 0, 2, 6, and 14) from 87 patients (UC, n = 38; CD, n = 49) and 37 

healthy control subjects to identify potential diagnostic biomarkers that could hold differential 

power.126 The study confirms previously published studies105,107,123,160 and generally displays 

significant differential diagnostic power in models comparing patients with active IBD with 

healthy control subjects, but as with tissue and fecal metabonomics differentiation between UC 

14 weeks of IFX treatment in different treatment re-
sponse types (i.e. Rem, Res or primary NRes).

Differentiation of CD and UC patients, control subjects
and IFX response types
The study confirms previously published studies [17–21]
and displays significant differential diagnostic power in
models comparing active UC patients versus control
subjects, active CD patients versus control subjects, and
remission CD patients versus control subjects but no
significant discrimination for active UC versus active CD
patients, active UC versus remission UC patients, active
CD versus remission CD patients, and remission UC pa-
tients versus control subjects (Table 3 and Additional file
5: Table S3 and Additional file 6: Table S4). No previous
studies have actually compared the active and quiescent
disease stages of CD and UC patients, although Dawis-
kiba et al. [17] did compare active IBD and remission
IBD patients and found significant metabolic profiles

that differentiated these two congregated cohorts. They
also compared remission IBD patients and control sub-
jects, but without any significant results. This, however,
contrasts with the findings of Williams et al. [20], who
were able to differentiate between remission CD patients
and control subjects, as in the present study, and remis-
sion UC patients and control subjects, in contrast to the
present study. The methodology and statistical proce-
dures in the study by Williams et al. [20] and those used
herein are comparable, and no obvious explanation has
been identified for the discrepancy in outcome.
The sustained metabolic changes at 14 weeks of IFX

treatment in the remission CD patients versus control
subjects might be an indication of the more profound
inflammation compared with the relatively superficial in-
flammation seen in UC patients; in Table 4, the number
of significant up- or down-regulated metabolites de-
creases as treatment proceeds from the initial IFX infu-
sion (CD Rem(0) vs. control) to the fourth infusion (CD

Table 3 Validation of PLS-DA and O-PLS-DA models
Model PLS-DA

permutation test n = 200
O-PLS-DA
CV-ANOVA

Area under the ROC curve

CD(0) vs. UC(0) Q2 = 0.095 Q2 = –0.182 0.44

× × P = 1

CD(0) vs. Control Q2 = 0.637, r = 0.32 Q2 = 0.7 0.96

✓ ✓P < 0.001

UC(0) vs. Control Q2 = 0.583, r = 0.32 Q2 = 0.383 0.94

✓ ✓P < 0.001

CD Rem(0) vs. Control Q2 = 0.63, r = 0.37 Q2 = 0.66 0.96

✓ ✓P < 0.001

CD Rem(2) vs. Control Q2 = 0.69, r = 0.37 Q2 = 0.66 0.95

✓ ✓P < 0.001

CD Rem(6) vs. Control Q2 = 0.52, r = 0.37 Q2 = 0.63 0.91

✓ ✓P < 0.001

CD Rem(14) vs. Control Q2 = 0.48, r = 0.40 Q2 = 0.62 0.90

✓ ✓P < 0.001

UC Rem(0) vs. Control Q2 = 0.56, r = 0.47 Q2 = 0.60 0.91

✓ ✓P < 0.001

UC Rem(2) vs. Control Q2 = 0.60, r = 0.48 Q2 = 0.60 0.94

✓ ✓P < 0.001

UC Rem(6) vs. Control Q2 = 0.25 Q2 = 0.52 0.71

× ✓P < 0.001

UC Rem(14) vs. Control Q2 = 0.17 Q2 = 0.37 0.64

× ✓P < 0.001

The models were only considered valid if the permutation test and the CV-ANOVA test (p < 0.05) were satisfied at the same time
(0), before 1st infusion of infliximab; (2), before 2nd infusion; (6), before 3rd infusion; (14), before 4th infusion
Q2, predictability of the model; r correlation coefficient
✓, valid model
X invalid model
CD Crohn’s disease, CV-ANOVA analysis of variance of the cross-validated residuals, O-PLS-DA orthogonal-projection to latent structure discriminant analysis, PLS-DA
projection to latent structure-discriminant analysis, Rem remission, ROC receiver operating characteristics, UC ulcerative colitis
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and CD is still challenging whether active or quiescent disease is considered (Table 3). The few 

studies where inactive IBD has been identified with distinct metabolic profiles compared with 

healthy control subjects, the disease activity has been based only on clinical scores (e.g., 

Williams et al.121) or indirect measures such as a mean fecal calprotectin of 234.5 μg/g in the 

study by Notarargio et al.,125 and the risk of subclinical inflammation is consequently present. 

One study, however, has demonstrated distinct metabolite profiles in patients with UC and CD 

and healthy control subjects and through variable selection created a diagnostic model containing 

only four metabolites (i.e., oxalate, 3-hydroxy-butyrate, ribulose, and 1,6-anhydroglucose) 

holding enough differential power to distinguish between UC and CD with a sensitivity and 

specificity of 85% and 97%. respectively.161 This study also produced a UC activity assessment 

model with only two metabolites (p-hydroxybenzoic acid and histidine; AUC = 0.97) that 

correlated with the clinical activity score (active UC vs. quiescent UC). In the subsequent 

prospective monitoring study, three patients with later flares had a simultaneous increase in the 

UC assessment index and four patients who went into remission had a reduction, suggesting that 

this model could be a clinically applicable monitoring tool.161 It is important to note that 

treatment with sulfasalazine was found to be positively correlated with high levels of p-

hydroxybenzoic acid, which was one of the metabolites holding strong differential power, and 

that no cohort with non-IBD intestinal inflammation was included in the study. Histidine, in 

contrast, is consistently reported at low levels in patients with IBD. In a prospective study of 

patients with quiescent UC, and among the investigated metabolites, low levels of histidine have 

been exclusively identified to be predictive of relapse within a 1-year period.162 Nevertheless, it 

should be noted that remission was based on a clinical score and that no information on 

endoscopy or fecal calprotectin was available. Furthermore, in a recent study, the ulcerative 
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colitis endoscopic index score (UCEIS) and histologic severity (Nancy index) were correlated 

with high and low UCEIS (accuracy, 77% ± 5%) and Nancy index (65% ± 6%) metabolic 

profiles. These profiles were characterized by decreased lipoproteins and increased BCAAs, 

glucose, and myo-inositol in high UCEIS and Nancy index, demonstrating for the first time that 

serum-based metabonomics can distinguish between mild and severe active UC.163 Interestingly, 

the patients were followed prospectively, and a distinct baseline metabolic profile was identified 

that predicted deterioration of symptoms within a period of 6 months, and again low levels of 

histidine were found to be predictive. 

Lipidomic studies have similarly found profound changes in the lipid profile of patients 

with both UC and CD compared to control subjects.164–168 One study used these profound 

differences in the lipid profile of especially fatty acids and combined those with serum proteomic 

data to create highly predictive models for UC and CD compared with control subject with 100% 

accuracy, but for unknown reasons, no direct models were created for UC versus CD.169 A 

similar study could differentiate between patients with IBD and control subjects, but no valid 

predictive models were created for UC versus CD based on the untargeted bioinformatics 

approach.170 The fact that differentiation between UC and CD is difficult despite apparent 

differences in the lipid profiles highlights the importance of continued optimization of the 

analytical strategies for serum metabonomics,171 rigorous phenotyping, and integration of omics. 

Recent studies by Borren et al.83,172 elegantly illustrated the advent of such an approach, because 

patients with quiescent IBD were characterized with metagenomics and serum proteomics and 

metabonomics. Based on stringent phenotyping, the authors identified four metabolic markers 

(i.e., propionyl-L-carnitine, carnitine, sarcosine, and sorbitol) predictive of relapse within two 
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years. The AUC of this models was only 0.70, but combined with a similar proteomics model, 

the AUC increased to an acceptable 0.83, which was superior to both models alone. 

 

Intestinal Omics  

The merge of the most vital discriminative information from different omics levels seems to 

significantly improve the diagnostic power. I consequently integrated transcriptomics and 

metabonomics data generated from colonic mucosal pinch biopsies from patients with active UC 

(n = 22) and inactive UC (n = 21) and healthy control subjects (n = 15) to improve diagnostics 

and through variable selection to evaluate the prediction performance of relatively small (~20 

variables) multivariate biomarker panels.33 By means of orthogonal partial-least-squares 

regression-discriminant analyses (OPLS-DA) in combination with class-balanced Monte Carlo 

cross-validation, I assessed the predictive performance as the AUC for each comparison and each 

individual and combined data set. As seen in Table 4, the best predictive performances were 

observed with active UC versus inactive UC (AUC > 0.95 across all data sets) and active UC 

versus control subjects (AUC > 92 across all data sets), whereas with inactive UC versus control 

subjects, the classification performance varied between the data sets, with the metabonomic 

(nuclear overhauser effect, NOE) performing the best. I subsequently assessed predictive 

we estimated prediction performance as AUC for each

comparison and each individual and combined data set
(Table 3). The best prediction performances were observed

with active UC versus quiescent UC (AUC[0.95 across all

data sets, Table 3), and active UC versus controls (AUC
[92 across all data sets, Fig. 1). With quiescent UC versus

controls the classification performance (Fig. 1) was lower

and more variable between the data sets, ranging from
AUC = 0.57–0.79, with the metabonomic (NOE) per-

forming the best.

ROC curves corresponding to all evaluated models
across all the data sets are found in Supplementary

Material.

3.2 Prediction performance in small candidate

biomarker panels selected from individual

and combined data sets

We utilised a multivariate logistic regression model fitted

by lasso, and applied a nested cross-validation procedure to
minimize the risk of over-fitting in order to evaluate the

prediction performance of relatively limited (\*20

variables) multivariate biomarker panels. Prediction per-

formance under variable selection for each subpopulation
and each data set were estimated (Table 4). The results

suggest that it is possible to discriminate between active

UC, quiescent UC, and controls; between Si and Sd, and
between the ages of onset, i.e. before and after 25 years of

age, based on relatively small subsets of transcriptomic and

metabonomic predictors. Discrimination between active
UC and controls (Fig. 1) is in the range of

AUC = 0.93–0.97, and for quiescent UC and controls
AUC estimates are found to be ranging between 0.68 and

0.76 across the data sets. ROC curves corresponding to all

evaluated models across all the data sets are found in
Supplementary Material.

The lasso based logistic regression model applied in this

study provides us with relatively small candidate subsets of
biomarkers for evaluation. Figure 2 shows the distribution

of the number of selected variables over cross-validation

rounds for each subpopulation in classification and variable
selection for each data set. Table 5 gives an example of

candidate biomarkers for the inactive UC versus controls in

the combined data set. Tables of candidate biomarker
panels (selected[10 % of the cross-validation rounds) are

provided for each data set in the Supplementary Material

for all data sets and models.

4 Discussion

The objective of the current study was to apply a novel

approach in which transcriptomics and metabonomics data
were merged with the intention to improve diagnostics,

biomarker identification, and to explore the possibilities of

a molecular phenotyping in UC patients. Thus, herein we
clearly demonstrate for the first time that transcriptomics

and metabonomics data, both as separate data sets and as

merged omics data, hold substantial differential power with
respect to active UC, quiescent UC, and controls, and with

different UC subphenotypes as well.

Table 2 Samples sizes in different subgroups of data

Analysis name Case name N total N cases Proportion
cases

ActiveControl Active 36 21 0.58

InactiveControl Inactive 34 19 0.56

InactiveActive Active 40 21 0.53

SiSd Si 24 16 0.67

DurationLess10 Duration 40 12 0.30

DebutLess25 DebutLess25 40 29 0.73

Analysis name subgroups of data, Case name group defined as cases,
N total number of observations in total, N cases number of cases,
Proportion cases fraction of total number of samples that belong to
the case group, Si steroid independence, Sd steroid dependence, Du-
rationLess10 disease duration less than 10 years, DebutLess25 age at
diagnosis less than 25 years

Table 3 Prediction performance

Analysis name Metabonomics (NOE) Metabonomics (CPMG) Transcriptomics Omics

ActiveControl 0.95 0.92 0.97 0.97

InactiveControl 0.79 0.65 0.57 0.58

InactiveActive 0.98 0.95 0.96 0.96

SiSd 0.73 0.76 0.80 0.78

DurationLess10 0.43 0.35 0.63 0.63

DebutLess25 0.43 0.34 0.38 0.36

Prediction performance estimates presented as area under the curve (AUC) for each sub-population and for each full data set, including combined
data sets: Omics. AUC estimates are based on classification using OPLS-DA and Monte Carlo cross-validation

NOE nuclear Overhauser effect, CPMG Carr–Purcell–Meiboom–Gill, Si steroid independence, Sd steroid dependence, DurationLess10 disease
duration less than 10 years, DebutLess25 age at diagnosis less than 25 years
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performance under variable selection for each subgroup, and the results indicate that it is actually 

possible to differentiate between patients with active UC, those with inactive UC, and control 

subjects; between steroid-independent (Si) and steroid-dependent (Sd) disease; and between 

early and late disease onset based on small subsets of transcriptomics and metabonomics 

variables (Table 5). However, the expected diagnostic benefits of combining omics in this case 

remained elusive, which might be explained by a potentially low correlation between the two 

omics. To test this further, I conducted a metabolome-transcriptome-wide association analysis to 

investigate linkage between the metabolite abundances and gene expression levels and to 

furthermore pay special attention to assessing differential expression in candidate genes reported 

in previous IBD GWASs.34 A substantial proportion of associations between metabolite 

abundances and gene expression levels was found with metabolic spectral features associated 

with hundreds of transcripts and others with only very few transcripts (Fig. 7). These results 

suggest that colonic tissue from patients with UC share an interconnected global molecular 

phenotype across both the transcriptome and metabolome that reflects the state of the biological 

system. It also indicates that both omics data sets actually can be combined in the development 

of diagnostic biomarker panels or in the molecular characterization of the phenotypes in UC. In 

paediatric patients) loses the response leading to Sd or

surgery. Avoiding the latter would have a considerable

impact on the patients’ quality of life.
Classification models that contain thousands of variables

are clinically non-applicable. Thus, besides the merging of

‘omics’ data, the overarching objective of the current study
was to evaluate the prediction performance of relative

small (\20 variables) multivariate biomarker panels. The

results (Table 4) suggest that it is actually possible to
discriminate between active UC, quiescent UC, and con-

trols, and between Sd and Si with similar AUC estimates as

for the full data set (Table 3). The fact that these biomarker

panels maintain and in some cases improve, i.e. Inactive-

Control and DebutLess25 increase from AUC of 0.58–0.76
and 0.36–0.69, respectively (Tables 3, 4), the discrimina-

tive power holds great promise for the development of

clinical relevant diagnostic tests. However, for these panels
to be clinically applicable similar discriminative power has

to be demonstrated in extracts from colonic biopsies so that

targeted biochemical assays can be developed, as NMR
spectroscopy is not expected to be readily available in an

everyday diagnostic lab.

The biomarker panels are also informative in terms of
the dominant pathophysiological processes at play. In this

respect it is interesting to note that biomarker panels
related to Sd and Si contain transcripts (protein inhibitor of

activated STAT 4, amino-terminal enhancer of split, and

hairy/enhancer-of-split related with YRPW motif-like, see
Supplementary Material, Table 14) that are known co-

repressors or co-regulators of steroid hormone receptors

(Lavery and McEwan 2005; Lavery et al. 2011). The same
panel also contains the transcript SLC38A5, which encodes

a Na-glutamine co-transporter found on the brush border

membrane of enterocytes. During chronic intestinal
inflammation Na-glutamine co-transporters are deregulated

(Saha et al. 2012), and recent evidence indicates that this

deregulation is due to an interaction with the glucocorticoid
receptor (Arthur et al. 2012). Glutamine is a major respi-

ratory fuel for gut-associated immune cells and enterocytes

and plays an important part in the synthesis of the endog-
enous thiol antioxidant glutathione. This coincides with

metabolites, i.e. glutamine and glutathione, found in the

biomarker panels of the Sd/Si model (Supplementary
Material, Table 15). Thus, besides providing a molecular

snapshot at the different ‘omics’ levels, the integration of

‘omics’ also represents a systems biology approach in
which entire pathways of importance to the pathophysiol-

ogy can be revealed; alterations in co-repressors or co-

regulators of steroid hormone receptors might lead to
changes in Na-glutamine co-transporter and subsequently

Table 4 Prediction performance of small candidate biomarker panels

Analysis name Metabonomics (NOE) Metabonomics (CPMG) Transcriptomics Omics

ActiveControl 0.93 0.90 0.97 0.96

InactiveControl 0.76 0.68 0.68 0.76

InactiveActive 0.94 0.89 0.93 0.93

SiSd 0.62 0.71 0.63 0.70

DurationLess10 0.54 0.50 0.38 0.38

DebutLess25 0.49 0.67 0.71 0.69

Prediction performance estimates presented as area under the curve (AUC) for each sub-population under selection of small candidate biomarker
panels for each full data set and the combined data sets: Omics. AUC estimates are based on classification using logistic regression fitted by lasso
and a nested Monte Carlo cross-validation procedure

NOE nuclear Overhauser effect, CPMG Carr–Purcell–Meiboom–Gill, Si steroid independence, Sd steroid dependence, DurationLess10 disease
duration less than 10 years, DebutLess25 age at diagnosis less than 25 years

Fig. 2 Distribution of the size of the selected biomarker panels over
100 (outer) cross-validation rounds. a Metabonomics NOE, b Metab-
onomics CPMG, c transcriptomics, and d Omics data set. The box
border represents the interquartile range and the horizontal line in the
box is the median. The whiskers show the largest/smallest observation
falling within a distance of 1.5 times the box size
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contrast, although a number of IBD GWAS candidate genes were differentially expressed in the 

UC phenotypes (Fig. 8), I found no evidence of a significant enrichment of differentially 

the two transcripts found in the current study (Figure 1D). The
main reason for this discrepancy is the definition of quiescent
disease; in the current study, quiescent disease was defined as a
Mayo score < 2 and no evidence of microscopic inflammation,
whereas a Mayo score < 4 and a Matts’ score < 347 was
considered as quiescent UC in the Planell study.15

Interestingly, the few differences found in the current study
between quiescent UC and controls generated significant
KEGG pathways (Table S11) such as “DNA replication,”
“mismatch repair,” “cell cycle,” and “oxidative phosphorylation,”
pointing in the direction of affected colonic mucosal cell
turnover in quiescent UC, which is in line with the
compromised wound healing observed in UC.48 The disrupted
wound healing process is also reflected in the top-ranked
KEGG pathway, one carbon pool by folate (Table 7), and the
molecular signature of Sd. The later is signified by the fact that
the upregulated transcripts with the highest effect size estimates
(Figure 2A), i.e., MMP7, SERPINB7, KLK10, and SPP1, are all
involved in the homeostasis of the extracellular matrix.49−53

This coincides with the lower amount of the metabolite lysine
(Figure 2B,C) that is usually oxidized in the extracellular matrix
to allysine, which is essential for cross-link formation and
stabilization of collagen and elastin.54 The merged omics data
consequently provides a comprehensive picture of a more
pronounced imbalance in the homeostasis of the extracellular
matrix in UC patients with Sd compared to Si. Of note, these
transcripts have also been established as upregulated in
colorectal cancer (CRC),49−53 indicating that the compromised
wound healing process in the Sd phenotype might predispose
the development of UC-associated CRC. However, this is a

Figure 4. Metabolomic−transcriptomic-wide association analysis. (A) 1H NMR CPMG spectral profile plotted together with annotations. Blue bars
indicate the number of significantly (FDR adjusted p-value < 0.05) associated mRNA transcripts for each spectral feature. (B) Empirical distribution
of the number of associations for each mRNA variable. (C) Empirical distribution of the number of associations for each 1H NMR spectral feature.

Table 5. Pathway Analysis (KEGG) Based on Top 5%
Metabolome (1D 1H NMR NOESY)−mRNA
Transcriptome-Wide Analysisa

KEGG pathway p-value p-value (adj)

endocytosis 6.31 × 10−3 7.34 × 10−1

adherens junction 7.03 × 10−3 4.63 × 10−1

hepatitis C 9.88 × 10−3 2.50 × 10−1

Fc gamma R-mediated phagocytosis 1.46 × 10−2 7.80 × 10−1

ABC transporters 3.16 × 10−2 6.56 × 10−1

calcium signaling pathway 3.56 × 10−2 8.39 × 10−1

colorectal cancer 3.94 × 10−2 2.50 × 10−1

protein processing in endoplasmic reticulum 4.13 × 10−2 5.99 × 10−1

salivary secretion 4.83 × 10−2 5.99 × 10−1

aTop-ranked KEGG pathways are displayed.

Table 6. Pathway Analysis (KEGG) Based on Top 5%
Metabolome (1H NMR CPMG)−mRNA Transcriptome-
Wide Analysisa

KEGG pathway p-value p-value (adj)

Fc gamma R-mediated phagocytosis 1.24 × 10−2 6.73 × 10−1

hepatitis C 1.46 × 10−2 2.92 × 10−1

proteasome 2.25 × 10−2 6.90 × 10−1

endometrial cancer 2.71 × 10−2 7.80 × 10−1

acute myeloid leukemia 3.37 × 10−2 4.63 × 10−1

adherens junction 3.96 × 10−2 4.63 × 10−1

endocytosis 4.25 × 10−2 7.80 × 10−1

aTop-ranked KEGG pathways are displayed.
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the number of associations for each metabolite and mRNA
target, providing an overview of the degree to which
associations were observed globally. Figure 4A shows the
number of transcriptomic associations for each spectral region
in the NMR spectra (CPMG), indicating that there are some

1H NMR spectral features associated with hundreds of mRNA
transcripts, whereas others have relatively few associations with
gene expression (for analogous results from NOESY 1H NMR
spectral profile, see Figure S1). To ascertain if there was any
functional enrichment among those mRNAs associated with the
highest number of metabolic features (top 5% of mRNAs
associated with at least one metabolic feature), we carried out
pathway enrichment analysis using the KEGG pathway
database44 (see Methods). The top-ranked KEGG terms
included endocytosis (nominal p-value = 0.0063) and adherens
junction (nominal p-value = 0.007); see Tables 5 (1H NMR
NOESY) and 6 (1H NMR CPMG) for all top-ranked pathways.
Pathway Analysis in Subgraphs Relating to Predictive
Molecular Markers

Predictive models and candidate biomarker panels have
previously been reported for the different UC phenotypes.23

To determine the extent to which these predictive candidate
biomarkers are associated with each other and other genes and
metabolites, we inferred a network model in the form of a
Gaussian graphical model (see Methods for details). The model
contains metabolic variables, mRNA transcriptomic variables,
and a set of latent variables representing multivariate patterns in
the phenotypic data relating to the study participants (see
Methods), including UC phenotype-related information. In
particular, we were interested in whether local subgraphs
around the top-ranked predictive markers previously reported23

could provide further information about the molecular
functions of the molecular mechanisms related to these
candidate biomarkers. Examples of such subgraphs include
those related to predictive markers from Si vs Sd status (Figure
5), active UC vs controls (Figure S2), and quiescent UC vs
controls (Figure S3). For each set of predictive markers, a
subgraph was extracted (see Methods), and KEGG pathway
over-representation analysis was carried out; the top-ranked
KEGG pathways can be found in Tables 7, S17, and S18, and
the corresponding subgraphs are visualized in Figures 5, S2, and
S3. The top-ranked KEGG pathways in the Sd model (Figure
5) included one carbon pool by folate, renin−angiotensin
system, starch and sucrose metabolism, and phenylalanine,
tyrosine, and tryptophan biosynthesis (Table 7).

■ DISCUSSION
The molecular etiology of UC is complex and currently not
well characterized. In this study, the transcriptome and
metabolome was characterized in colonic mucosal biopsies
from UC patients and healthy participants, providing a
comprehensive molecular profile of a tissue that is of direct
disease relevance. We report significant molecular associations
and molecular pathway associations with UC phenotypes.
Univariate association analysis revealed extensive associations

between metabolites and mRNA expression as well as between
molecular markers and UC phenotypes. As expected, the
highest proportion of significant difference in molecular
abundances was found between subjects with flare-ups of UC
vs controls. However, relatively few associations were found
with quiescent UC vs controls (Figure 1). This is surprising
given that previous studies repeatedly identified quiescent UC
as a unique phenotype at the transcriptomic11−13 and
metabonomic levels. Thus, Planell et al.15 identified 5469
transcripts that were significantly deregulated in quiescent UC
compared to controls; 3700 of these transcripts were also found
to be perturbed in active UC, which is an extreme contrast to

Figure 3. Association analysis of mRNA expression levels for GWAS
candidate genes with UC active disease and control status. Effects size
estimates (coefficient) and associated standard errors from the robust
linear model are displayed for significant associations (Bonferroni
adjusted p-value < 0.05). A positive effect size (beta) indicates a higher
expression level in the UC active group.

Table 4. mRNA Transcriptomic Associations among Genes
Included in the Set of GWAS Candidate Genes with UC
Active and Control Statusa

SNP
candidate
gene

beta
(robust)

std err
(robust) p-value (robust)

rs2472649 CXCL1 4.67 0.28 7.00 × 10−17

rs2472649 PF4 2.29 0.19 9.24 × 10−13

rs6927022 HLA-DRA 1.28 0.14 4.20 × 10−10

rs529866 SOCS1 1.31 0.15 1.11 × 10−9

rs2472649 CXCL3 4.02 0.47 1.38 × 10−9

rs10758669 JAK2 0.76 0.11 6.63 × 10−8

rs2472649 CXCL2 3.63 0.52 9.30 × 10−8

rs2472649 CXCL6 4.25 0.68 6.85 × 10−7

rs2188962 SLC22A5 −1.60 0.26 9.50 × 10−7

rs6017342 HNF4A −0.51 0.09 2.24 × 10−6

rs2412970 MTMR3 −0.31 0.05 2.45 × 10−6

rs26528 SULT1A2 −2.05 0.36 2.75 × 10−6

rs26528 SULT1A1 −1.55 0.28 4.65 × 10−6

rs7240004 SMAD7 −0.73 0.13 6.02 × 10−6

rs4246215 FADS1 1.52 0.29 1.35 × 10−5

rs559928 CCDC88B 0.51 0.10 1.64 × 10−5

rs11168249 VDR −0.69 0.14 2.25 × 10−5

rs2930047 DAP 0.41 0.08 3.29 × 10−5

rs28374715 ITPKA −1.33 0.29 8.98 × 10−5

rs2790216 CISD1 −0.38 0.08 1.075 × 10−4

rs7608910 REL 0.47 0.11 1.4513 × 10−4

rs12946510 ZPBP2 −0.25 0.06 1.62281 × 10−4

rs2382817 PNKD −0.46 0.11 2.04162 × 10−4

aSignificant associations were determined by Bonferroni adjusted p-
value < 0.05. A positive effect size (beta) indicates a higher expression
level in the UC active group. SNP represents the SNP ID, canididate
gene indicates the HGNC identifier, beta represents the effect size
estimate, std err is the associated standard error, and p-value is the p-
value from the robust linear model.
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expressed genes in the subset of GWAS candidate genes. This is in line with subsequent 

transcriptome-wide expression analyses in more recent studies by one of our own research 

groups (i.e., CAGE data)29 and others,173 where transcriptome data from intestinal biopsies in 

300 healthy European individuals were correlated to IBD GWAS signals and provided evidence 

that 63 of the known IBD loci actually reflect the activity of common regulatory variants that 

preferentially drive multigenic modules. This just confirms that the estimated genetic effect sizes 

are relatively small and that other molecular risk factors (e.g., epigenetic or environmental 

effects) may play a larger role. The need for integration of IBD multiomics is consequently 

becoming more and more evident, which is also reflected in the increase in multiomics data 

availability.174,175   

 

IBD Phenotypes 

Response to Treatment 

My longitudinal cohort study of serum metabonomics from patients with IBD treated with IFX 

demonstrated that the metabolic profiles in active IBD were clearly discriminated from the 

healthy control subjects before anti-TNF therapy.126 After induction therapy (i.e., 14 weeks of 

treatment), the metabolic profile of patients going into clinical remission became almost 

indistinguishable from that of healthy control subjects (Table 3), whereas responders stayed 

significantly different, as expected (Table 6). Surprisingly, primary nonresponders, especially 

nonresponding patients with UC, did not seem to have a significantly different metabolic profile 

from healthy control subjects, neither before nor after treatment (Table 6). Subsequent analyses 

comparing the metabolic profiles of the different response groups did not reveal any differences, 

presumably because of the small numbers in each group, nor did I identify an explanation in the 
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demographics or clinical scores because these were comparable between the response groups. 

Thus, the primary nonresponders to IFX seem to constitute a unique molecular phenotype, 

although not identified with the current technological approach. Another recent study, however, 

has used liquid chromatography/mass spectrometry (LC/MS)-based metabonomics on serum and 

feces and identified lipid profiles with increased levels of phosphocholine, ceramide, 

sphingomyelin, and triglycerides in nonresponders to anti-TNF treatment.79 Besides confirming a 

destinct molecular signature for 

primary nonresponders, this study 

also pinpoints a possible 

pharmacodynamic explanation for 

the primary anti-TNF nonresponse 

because the dominant 

inflammatory process might 

correlate with a specific metabolic 

phenotype, in which some are 

driven by TNF and others by lipid. 

This kind of a priori knowledge 

would bring us one step closer to 

real-world precision medicine and 

let us choose between TNF 

inhibitors and other regimens from 

the therapeutic armamentarium 

(further discussed in Bjerrum et al.134). 

  Model 
PLS-DA 

Permutation test n=200 
Q2 

O-PLS-DA 
CV-ANOVA 

Q2 

CD Res(0) vs. Control 
CD Res(2) vs. Control 
CD Res(6) vs. Control 
CD Res(14) vs. Control 

0.692 ü 
0.632 ü 
0.598 ü 
0.568 ü 

0.637 ü, p<0.001 
0.586 ü, p<0.001 
0.574 ü, p<0.001 
0.557 ü, p<0.001 

CD NRes(0) vs. Control 
CD NRes (2) vs. Control 
CD NRes (6) vs. Control 
CD NRes (14) vs. Control 

0.706 ü 
0.339 × 
0.390 ü 

—— 

0.731 ü, p<0.001 
0.498 ü, p<0.001 
0.502 ü, p<0.001 

—— 

CD Rem(0) vs. CD Res(0) 
CD NRes (0) vs. CD Res(0) 
CD NRes (0) vs. CD Rem(0) 

0.097 × 
0.628 ü 
0.195 × 

0.035 ×, p=0.89 
0.558 ×, p=0.05 
-0.143, × p=1.00 

UC Res(0) vs. Control 
UC Res(2) vs. Control 
UC Res(6) vs. Control 
UC Res(14) vs. Control 

0.477 ü 
0.388 ü 
0.453 ü 
0.471 ü 

0.544 ü, p<0.001 
0.552 ü, p<0.001 
0.419 ü, p<0.001 
0.424 ü, p<0.001 

UC NRes (0) vs. Control 
UC NRes (2) vs. Control 
UC NRes (6) vs. Control 
UC NRes (14) vs. Control 

0.272 × 
0.597 ü 
0.155 × 
0.380 × 

0.313 ü, p=0.003 
0.584 ü, p<0.001 
0.052 ×, p=0.734 
0.289 ü, p=0.013 

UC Rem(0) vs. UC Res(0) 
UC NRes (0) vs. UC Res(0) 
UC NRes (0) vs. UC Rem(0) 

-0.21 × 
-0.175 × 
-0.102 × 

-0.296 ×, p=1 
0.022 ×, p=1 
-0.573 ×, p=1 

	
The models were only considered valid if the permutation test and the CV-ANOVA test (p<0.05) 
were satisfied at the same time 
CD, Crohn’s disease; CV-ANOVA, analysis of variance of the cross-validated residuals; NRes, 
non-responder, O-PLS-DA, orthogonal-projection to latent structure-discriminant analysis; PLS-
DA, projection to latent structure-discriminant analysis; Rem, remission; Res, responder; UC, 
ulcerative colitis  
(0), before 1st infusion of infliximab; (2), before 2nd infusion; (6), before 3rd infusion; (14), before 4th 
infusion 
Q2, predictability of the model; r correlation coefficient 
✓ valid model 
X invalid model 
-- Not enough samples to perform statistics 

Additional file 4: Table S2 Validation of PLS-DA and O-PLS-DA models 

Table S2 (Additional file 4) from Bjerrum et al.126 

Tabel 6 Validation of PLS-DA and O-PLS-DA models 
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A Proatherogenic Lipid Profile and Increased Risk of Cardiovascular Disease 

Chronic inflammation is a dominant driver of thrombosis and atherosclerotic cardiovascular 

disease, and several chronic conditions, such as rheumatoid arthritis and psoriasis, are associated 

with progressive atherosclerosis.176,177 The nationwide Danish landmark cohort study of 4.3 

million people, including 28,833 patients with IBD followed for up to 13 years, also associated 

IBD with cardiovascular heart disease as an independent risk factor.178 Another Danish study of 

20,795 patients demonstrated that the risk for myocardial infarction, stroke, and cardiovascular 

death was significantly higher during IBD flares, whereas it was similar to that in control 

subjects during remission.179 Furthermore, the risk for atherosclerotic cardiovascular disease 

seems to be particularly increased during the first year after IBD diagnosis, presumably due to 

disease activity. The exact genesis still remains elusive, although a proatherogenic serum lipid 

profile seems to play a central part.180  Thus increased very low-density lipoproteins (VLDLs) 

and decreased high-density lipoproteins (HDLs) are found repeatedly in patients with active IBD 

and appear to be the consequence of increased transit times, malabsorption, and the 

inflammatory setting itself.107,121,126 Moreover, in my longitudinal study monitoring the 

metabolic trajectory during induction treatment of IBD patients with IFX, this proatherogenic 

lipid profile was ameliorated in the context of patients with IBD brought into remission, which 

was, however, not the case for nonresponders (Fig. 9).126 These results underline the importance 

of rigorous and ambitious treat-to-target strategies to avoid not only intestinal complications but 

also cardiovascular morbidity, especially among young adults. It also merits consideration 

regarding concomitant statin treatment and early lifestyle interventions during frequent flares or 

chronically active disease. No international IBD treatment algorithms currently recommend such 

preventive strategies, but with the current evidence this might soon change. 
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Quiescent UC and Omics Remission 

The distinct colonic transcriptional profile of patients with quiescent UC previously described by 

us (i.e., Olsen et al.27 and Bjerrum et al.28) and others41,56,62 has been difficult to replicate in other 

Rem(14) vs. control). In contrast, patients with UC have
fewer significant metabolic changes at the time of treat-
ment initiation (UC Rem(0) vs. control), and these
changes are already absent after 6 weeks of treatment.
This circumstance might also explain why the meta-
bolic profiles from the successive serum samples (i.e.
weeks 0, 2, 6 and 14) within each response type (i.e.
Rem, Res and NRes) did not show any significant dis-
crimination (Additional file 5: Table S3 and Additional
file 6: Table S4); the metabolic changes seen from week
0 through week 14 in patients with CD entering remis-
sion are simply too few (Table 4). Future studies need
to collect serum samples within an expanded time
frame, at least in CD patients. In contrast, patients with
UC entering remission have very few significantly
deregulated metabolites at the time of treatment
initiation (Table 4, UC Rem(0) vs. control), and the
subsequent metabolic changes may consequently be

insufficient to create significant discrimination between
successive serum samples.
As could be expected, the metabolic profiles of CD

Res and UC Res patients stayed significantly different
from that of control subjects (Additional file 4: Table S2)
throughout the induction period. Surprisingly, this was
not the case for CD NRes and UC NRes patients. The
obvious explanation is the relatively low number of sam-
ples in these groups (n = 9 and 10, respectively), but it
might also be explained by an entirely different meta-
bolic profile in the serum of patients who are primary
non-responders to IFX. However, comparing the differ-
ent response types (i.e. Rem, Res and NRes) did not pro-
duce any significant discrimination. Thus, in order to
answer this question, lager cohorts are needed in future
studies. Furthermore, the lack of discriminant power
might also be explained by the poor correlation in gen-
eral between clinical disease activity indices and the

Fig. 3 O-PLS-DA score plots and loading plots. O-PLS-DA score plots and corresponding coefficient-coded loading plots obtained from metabolic
profiles of 1H NMR spectra of the serum samples. The score plots display the first PLS component and one orthogonal component for each model. A
two-way separation of the samples is demonstrated in all plots. The corresponding back-scaled loading plots reflect the class differences in the NMR
spectra. Upright peaks indicate a relatively increased intensity of metabolites, and downright peaks a decreased intensity of metabolites. The colours
shown on the plot are associated with the significance of metabolites in separating the samples; red indicating significance at a level of P < 0.05. (0),
before first infusion of infliximab; (2), before second infusion; (6), before third infusion; (14), before fourth infusion. Glc glucose, Gln glutamine, GPC
glycerophosphocholine, Gly glycine, HDL high-density lipoproteins, His histidine, Lac lactate, NAG N-acetyl glycoprotein, Phe phenylalanine, U1, U2, U3
unknown metabolite, Val valine, VLDL very-low density lipoproteins, CD Crohn’s disease, UC ulcerative colitis, Rem remission
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cohorts.29,33,34 In my initial integrative omics study,33 the predictive transcriptomic model for 

differentiating patients with quiescent UC and healthy control subjects was poor, with an AUC 

of only 0.57 (Table 4), and subsequent analyses identified only two differentially expressed 

transcripts among quiescent UC patients and healthy control subjects.34 The reason for this 

discrepancy between studies often lies within the definition of quiescent disease; quiescent UC 

was defined as a Mayo score of <2 and no evidence of microscopic inflammation (i.e., a Geboes 

score of 0), whereas a Mayo score <4 and a Matts score181 <3 were considered as quiescent 

disease in the Planell study.56 In a more recent study, the mean Geboes score for patients in 

remission was 1.07, and the significant fold change was only set at 0.5.41 Thus an actual unique 

transcriptionally defined state of remission in UC does not seem to exist with stringent histologic 

remission criteria. It is, however, intriguing that the few differences generated in study IV 

produce significant KEGG pathways such as DNA replication, mismatch repair, cell cycle, and 

oxidative phosphorylation that indicate compromised colonic mucosal cell turnover even in 

quiescent UC and, consequently, wound-healing issues, as described previously in UC.182  

At the metabonomics level, differentiating patients with quiescent UC and healthy control 

subjects was possible, with an AUC of 0.79 (Table 4, NOE data33), even though no significant 

associations were found between single metabolites and the model comparing patients with 

quiescent UC and healthy control subjects in the subsequent integrative study.34 Nevertheless, 

these results complement earlier findings from me74 and others73,75 indicating the existence of an 

even deeper molecular state of quiescent disease in terms of metabonomics remission (see 

detailed discussion in Bjerrum et al.132). An unfavorable course of IBD with frequent flares and 

an increased risk of colectomy and CRC is conditioned by sustained wound formation and 

inflammation. Although not currently recommended by the STRIDE initiative, histologic 
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remission is becoming the new treatment target in IBD, and large ongoing trials (e.g., 

ClinicalTrials.gov identifier NCT05157750) are comparing endoscopic remission, histologic 

remission, and barrier healing for the prediction of long-term disease behavior.183 However, with 

the existence of a potential metabonomics remission in IBD, a future treatment target might be 

set at the molecular level to achieve even better long-term outcomes, but large-scale prospective 

studies based on metabonomics and intestinal biopsies are warranted to validate this hypothesis. 

 

Glucocorticoid-Dependent UC 

Oral or intravenous glucocorticoids are used for the treatment of moderate to severe UC.184 After 

initial exposure to glucocorticoids, approximately two-thirds of patients will require 

reintroduction, and one-third will become glucocorticoid dependent over time. A glucocorticoid-

dependent phenotype is characterized by flares recurring during glucocorticoid tapering or within 

3 months after glucocorticoid discontinuation and is associated with a higher risk of 

colectomy.185,186 A priori knowledge of glucocorticoid dependency would allow for early 

intervention with timely concomitant treatment with immunomodulators or initiation of 

treatment with biologics. My integrative studies demonstrate that it is actually possible to 

molecularly characterize and consequently identify a glucocorticoid-dependent phenotype 

(Tables 4 and 5).33,34 Interestingly, the transcripts and metabolites that molecularly dominate this 

phenotype are all involved in the homeostasis of the extracellular matrix (Fig. 10) and, as a 

consequence, are part of wound-healing and development of CRC.187–192 Thus, glucocorticoid-

dependent patients with UC seem to have an imbalance in the extracellular matrix potentially 

resulting in insufficient mucosal wound-healing, which ultimately leads to the increased risk of 

CRC. This hypothesis obviously needs to be elucidated in future studies. 
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in Figure 3 and Table 4 (see Table S16 for a list of all
differentially expressed GWAS candidate genes and related
SNP identifiers).

Metabolome−Transcriptome-Wide Association Analysis

Next, we investigated the extent to which metabolic
abundances were associated with mRNA expression in colonic
mucosal biopsies, which could provide an indication of how
coregulated these two molecular phenotypes are in a broad
sense. To do so, we pursued genome- and metabonome-wide
association analysis. All pairwise associations between metabolic
variables and mRNA transcriptomic variables were tested for
significant associations using a robust linear model (see
Methods). The models were adjusted for UC phenotype
status, focusing the analyses on detecting direct transcriptom-
ic−metabolic associations, which are of primary interest for
characterizing the dependencies between these two molecular
phenotype categories. We found a substantial proportion of
associations between metabolite abundances and expression
levels of genes. Figure 4B,C shows the empirical distribution of

Figure 2. Si/Sd status association analysis. Effect size estimates (coefficient) and associated standard errors (robust linear model) for (A) mRNA
expression data, (B) 1H NMR CPMG spectral data, and (C) 1H NMR NOESY spectral data. Positive coefficients (beta) indicate a higher expression
level in the Si group relative to that in the Sd group. (Labels: HGNC gene identifiers are used for mRNA transcript probes when available, otherwise
Ensembl IDs are provided. For NMR spectral features, annotated metabolites are provided where available, otherwise the chemical shift (ppm) is
used.)

Table 3. Pathway Analysis (KEGG) Based on mRNA
Transcriptomic Association with Steroid Dependency
Statusa

KEGG pathway p-value p-value (adj)

one carbon pool by folate 6.19 × 10−3 2.23 × 10−1

renin−angiotensin system 6.19 × 10−3 2.23 × 10−1

starch and sucrose metabolism 2.47 × 10−2 5.31 × 10−1

phenylalanine, tyrosine, and tryptophan
biosynthesis

3.70 × 10−2 5.31 × 10−1

aSignificant (FDR adjusted p-value < 0.05) pathways are listed.
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Figure 10 

Glucocorticoid dependency status association analysis. Effect size estimates (coefficient) and associated standard 
errors (robust linear model) for (A) mRNA expression data, (B) 1H NMR CPMG spectral data, and (C) 1H NMR 
NOESY spectral data. Positive coefficients (beta) indicate a higher expression level in the steroid independent 
group relative to that in the steroid dependent group. (Labels: HGNC gene identifiers are used for mRNA 
transcript probes when available, otherwise Ensembl IDs are provided. For NMR spectral features, annotated 
metabolites are provided where available, otherwise the chemical shift (ppm) is used.) For abbreviations, please 
see Rantalainen et al.34. 

Figure 2 from Rantalainen et al.34 
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Novel Therapeutic Targets and Regimens 

Transcriptomics 

To characterize the inflammatory processes and to identify transcripts of importance for the 

carcinogenic behavior of left-sided UC, pancolitis, and UC-associated dysplasia, I enrolled three 

cohorts - one exploratory microarray cohort and two validation cohorts, including 40 patients 

with active pancolitis, 47 patients with active left-sided colitis, 12 patients with UC-associated 

dysplasia, and 15 healthy control subjects in all.32 The clustering of each group of patients in the 

principal components analysis (PCA) score plot suggests that each of them has a unique 

transcriptional profile and that the inflammatory processes of pancolitis are more similar to those 

of dysplasia than of left-sided colitis (Fig. 11).32 Focusing on transcripts based on their known 

involvement in inflammatory and neoplastic processes, I subsequently identified and validated 

FIGURE 1. PCA score plots of the microarray data. A, The PCA score plot is described by 2 principal components (PC1 and PC2) containing 31% of
the variance and illustrates separate clustering of the 4 sample types with only very few samples overlapping. These samples have been
re-evaluated without any changes in their diagnosis. B, The PCA score plot illustrates a 3-way separation of the samples in accordance with class
belonging. The separation is primarily along PC1 containing 18% of the variance: samples from patients with left-sided UC are localized toward
positive values, samples from patients with dysplasia toward negative values, and samples from patients with pancolitis in the middle. Each axis in
both PCA score plots is functionally annotated with the 5 most significant (P , 0.005) Gene ontology terms. BP, biological processes.
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FIGURE 1. PCA score plots of the microarray data. A, The PCA score plot is described by 2 principal components (PC1 and PC2) containing 31% of
the variance and illustrates separate clustering of the 4 sample types with only very few samples overlapping. These samples have been
re-evaluated without any changes in their diagnosis. B, The PCA score plot illustrates a 3-way separation of the samples in accordance with class
belonging. The separation is primarily along PC1 containing 18% of the variance: samples from patients with left-sided UC are localized toward
positive values, samples from patients with dysplasia toward negative values, and samples from patients with pancolitis in the middle. Each axis in
both PCA score plots is functionally annotated with the 5 most significant (P , 0.005) Gene ontology terms. BP, biological processes.
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FIGURE 1. PCA score plots of the microarray data. A, The PCA score plot is described by 2 principal components (PC1 and PC2) containing 31% of
the variance and illustrates separate clustering of the 4 sample types with only very few samples overlapping. These samples have been
re-evaluated without any changes in their diagnosis. B, The PCA score plot illustrates a 3-way separation of the samples in accordance with class
belonging. The separation is primarily along PC1 containing 18% of the variance: samples from patients with left-sided UC are localized toward
positive values, samples from patients with dysplasia toward negative values, and samples from patients with pancolitis in the middle. Each axis in
both PCA score plots is functionally annotated with the 5 most significant (P , 0.005) Gene ontology terms. BP, biological processes.
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PCA score plots of the microarray data. A, The PCA score plot illustrates separate clustering of the 4 sample 
types. B, The PCA score plot illustrates a 3-way separation of the samples in accordance with class belonging. 
Each axis in both PCA score plots is functionally annotated with the 5 most significant (P, 0.005) Gene ontology 
terms. BP, biological processes 

Figure 11 

Modified from Figure 1 from Bjerrum et al.32 
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insulin receptor alpha (INSRA) and MAP kinase interacting serine/threonine kinase 2 (MKNK2) 

as highly overexpressed in dysplastic tissue and pancolitis versus left-sided UC. The two 

transcripts (i.e., INSRA and MKNK2) are part of the same intracellular signaling pathways: the 

phosphatidylinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling 

pathways (Fig. 12) are important regulators of cellular growth, metabolism, and survival in 

normal functional cells. The signaling pathways congregate on MKNK2 like several other 

pathways of inflammation-associated cytokine receptors (e.g., interleukin 1 [IL-1] and TNF-α). 

Once activated, MKNK2 and MKNK1 (MKNKs) phosphorylate eukaryotic initiation factor 4E 

(eIF4E), which is the rate-limiting step in the activation of the eIF4G complex that subsequently 

guides the synthesis of proteins and cytokines. Previous studies have identified overexpressed 

and phosphorylated eIF4E as an oncogenic accelerator and phosphorylation by MKNKs as vital 

for the oncogenic features of eIF4E,193 whereas it seems unessential for development and growth 

in normal tissue.194 Based on these observations, I singled out MKNKs to be ideal and potential 

targets in both cancer and IBD treatments.32 Ultimately, MKNK inhibitors could serve as a novel 

therapeutic chemopreventive avenue in personalized tailored treatment of pancolitis with 

potentially very few side effects. Indeed, subsequent and recent work emphasize the strong 

potential for agents that modulate regulators of mRNA translation integrating signals from 

oncogenic and immune signaling pathways through phosphorylation of eIF4E and other mRNA 

binding proteins.195–198 Thus eFT508, tomivosertib, is such a potent agent that is a highly 
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selective and orally bioavailable MKNK1 and MKNK2 inhibitor that significantly reduces 

multiple proinflammatory and potentially tumorigenic cytokines (i.e., TNF-α, IL-6, and IL-8).198 

Furthermore, eFT508 reverses the aggressive and metastatic characteristics of liver tumors in a 

mouse model by efficiently eliminating eIF4E phosphorylation without affecting global protein 

indicate that overexpressed and phosphorylated eIF4E serves as
a genuine oncogenic accelerator in a milieu of cancer, which
seems to play an important role in the early stages of malignant
transformation as compared with the late stages of CRC.28–30

More importantly, a recent study confirmed that phosphorylation
of eIF4E by MKNKs is essential for the ability of eIF4E to
promote tumorigenesis,31 whereas it is dispensable for growth
and development in normal tissue.32 Taken together, these obser-
vations make MKNKs ideal and novel targets in cancer therapy
and in the treatment of IBD, and they may ultimately serve as
a new therapeutic chemopreventive avenue in the treatment of
especially pancolitis with potentially very few side effects.

From the downregulated list (see Table, Supplemental
Digital Content 2, http://links.lww.com/IBD/A626), the RT-PCR
validated transcripts of LAMC2, ITGA6, and EZR: showed a sig-
nificant lower expression in dysplasia as compared with controls
(cohort 1; Fig. 3) and inflamed samples (except for dysplasia
versus pancolitis). No differences between inflamed samples were
documented in cohort 1 (Fig. 3A), but external validation identi-
fied ITGA6 being significantly higher expressed in pancolitis
compared with left-sided UC (cohort 2; Fig. 3B), and similar
trends were observed for LAMC2 and EZR. Nevertheless, the
proteins of all 3 transcripts are essential for the integrity and
homeostasis of the epithelial barrier, as they are vital components

FIGURE 6. Schematic representation of the intracellular signaling pathways in which INSRA, THRA, and MKNK2 are pivotal elements. Ligand
binding to INSRA stimulates the tyrosine kinase activity of the receptor, which phosphorylates several substrates including IRS1/2 (insulin receptor
substrate 1/2) and Shc/Grb2/Sos (adaptor protein Src homology 2 domain-containing/shc/growth factor receptor bound protein-2/Son of Sev-
enless protein) complexes. IRS proteins and the ligand bound THRA are able to interact with the regulatory subunit (p85) of PI3K (phosphati-
dylinositide 3-kinase) resulting in an activation of the catalytic subunit (p110) and subsequently activation of AKT and mammalian target of
Rapamycin (mTOR). Activated mTOR liberates eIF4E (eukaryotic initiation factor 4E) from the inhibitory binding protein 4EBP1 (eIF4E-binding
protein 1), and eIF4E is free to engage the scaffolding protein eIF4G and be phosphorylated by MKNKs, which is the rate-limiting step in the
activation of the eIF4F translation initiating complex (eIF4G, eIF4E, and eIF4A). The activated Shc/Grb2/Sos complex along with ligand bound
cytokine receptors trigger the MAPK (mitogen-activated protein kinases) pathways of ERK (extracellular signal–regulated kinase) and p38, which
activate MKNKs promoting protein synthesis, mitogenesis, and oncogenesis.
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Schematic representation of the intracellular signaling pathways in which INSR and MKNK2 are pivotal 
elements. Activated INSRA stimulates the tyrosine kinase activity of the receptor, which phosphorylates several 
substrates including IRS1/2 (insulin receptor substrate 1/2) and Shc/Grb2/Sos (adaptor protein Src homology 2 
domain-containing/shc/growth factor receptor bound protein-2/Son of Sevenless protein) complexes. IRS 
proteins and the ligand bound THRA are able to interact with the regulatory subunit (p85) of PI3K 
(phosphatidylinositide 3-kinase) resulting in an activation of the catalytic subunit (p110) and subsequently 
activation of AKT and mammalian target of Rapamycin (mTOR). Activated mTOR liberates eIF4E (eukaryotic 
initiation factor 4E) from the inhibitory binding protein 4EBP1 (eIF4E-binding protein 1), and eIF4E is free to 
engage the scaffolding protein eIF4G and be phosphorylated by MKNKs, which is the rate-limiting step in the 
activation of the eIF4F translation initiating complex (eIF4G, eIF4E, and eIF4A). The activated Shc/Grb2/Sos 
complex along with ligand bound cytokine receptors trigger the MAPK (mitogen-activated protein kinases) 
pathways of ERK (extracellular signal–regulated kinase) and p38, which activate MKNKs promoting protein 
synthesis, mitogenesis, and oncogenesis 

Figure 12 

Figure 6 from Bjerrum et al.32 
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synthesis. This ultimately leads to a significant and selective downregulation of programmed 

death ligand 1 (PD-L1) protein abundance.199 PD-L1 is a transmembrane protein expressed on 

the cell surfaces of antigen-presenting cells such as macrophages and monocytes and is a ligand 

of the immune-checkpoint receptor programmed death 1 (PD-1) on T cells. PD-L1/PD-1 

interaction leads to negative regulation of T-cell proliferation and is a part of the normal 

immunologic homeostasis.200 Cancer cells hide from the immune system by cloaking themselves 

with expressed PD-L1 on the surface, thus inactivating and inhibiting T-cell proliferation, 

effectively evading the immune system. Immune checkpoint inhibitor treatment has, however, 

revolutionized cancer treatment within the past decade, and by blocking the PD-L1/PD-1 

interaction, and thus unmasking the cancer cells, a significant increase in survival rates has been 

documented in an array of microsatellite-instability-high or mismatch-repair-deficient tumors, 

including CRC201 and non–small cell lung cancer.202 By adding selective inhibitors of mRNA 

translation, such as eFT508, and thus selectively further downregulating PD-L1, the therapeutic 

efficacy of existing checkpoint inhibitors might increase considerably. A range of clinical trials 

has been or is currently being undertaken with eFT508 in both lymphoma (ClinicalTrials.gov 

identifier NCT02937675) and solid cancers (identifiers NCT03616834, NCT03690141, 

NCT04261218, NCT03318562, NCT02605083, and NCT03258398), including non–small cell 

lung cancer (NCT04622007), the latter in combination with anti-PD-L1 therapy. While the 

MKNK1/2 inhibitors are being thoroughly investigated for their potential in cancer therapy, their 

anti-inflammatory prospects so far remain unexploited.  

The INSRA found highly expressed in dysplasia and pancolitis32 is also commonly 

expressed in human cancers and binds insulin to promote tumorigenesis203 via upregulation of 

the PI3K signaling network, providing tumor cells with enhanced capacities for growth, 

https://clinicaltrials.gov/show/NCT02937675
https://clinicaltrials.gov/show/NCT03616834
https://clinicaltrials.gov/show/NCT03690141
https://clinicaltrials.gov/show/NCT04261218
https://clinicaltrials.gov/show/NCT03318562
https://clinicaltrials.gov/show/NCT02605083
https://clinicaltrials.gov/show/NCT03258398
https://clinicaltrials.gov/show/NCT04622007
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proliferation, survival, and migration.204,205 Thus abnormal insulin levels have been connected to 

several malignancies, including CRC, pancreatic cancer, prostate cancer, breast cancer, 

melanoma, osteosarcoma, and childhood malignancies.204 Several clinical trials in cancer with 

small-molecule inhibitors against PI3K report promising results.206 In spite of this, the effects of 

insulin and INSRA interaction are not straightforward. A recent in vitro study demonstrated that 

insulin enhances the effect of chemotherapeutic agents in CRC and that the underlying 

mechanism is downregulation of PI3K.207 This inconsistency in the effect of insulin may be the 

consequence of a local temporal pattern of action with high doses of insulin and a short duration 

of action accounting for the observed effect. The increased expression of INSRA in the intestinal 

epithelial cells (IECs) of patients especially with pancolitis consequently may not be a sign of a 

neoplastic conversion but rather a cytoprotective mode of action during inflammation. This 

hypothesis was tested in a spin-off study from my initial work32 employing mice with IEC-

specific inactivation of the INSR in an azoxymethane/dextran sulfate sodium (AOM/DSS) 

colitis–associated CRC model.208 The study revealed that mice with ablated INSR signaling did 

not display any signs of a deviant phenotype, implying that epithelial INSR signaling is not 

essential for the development of a normal colon. The ablation did, however, result in more severe 

inflammation and higher susceptibility to the DSS treatments, which might explain the increased 

incidence of IBD seen in patients with both type 1 and 2 diabetes mellitus.209,210 The ablation 

also resulted in the development of significantly larger (i.e., tumor > 2 mm) and higher numbers 

of colonic tumors. This intense inflammation and concomitant neoplastic tendency seem partly 

to be the consequence of compromised regeneration and wound-healing in inactivated INSR 

IECs because transcript levels of the IEC differentiation marker cytokeratin 20 and lymphocyte 

antigen 6A (which is a marker of repairing intestinal epithelium) were significantly lower during 
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DSS-induced inflammation. As could be expected, genes expressed at high levels were annotated 

with gene ontology terms linked to inflammation. In contrast, wild-type mice had high expressed 

genes linked to lipid metabolism during inflammation, signifying the importance of lipids in the 

inflammatory and wound-healing processes. Subsequent rectal administration of insulin in wild-

type mice ameliorated DSS-induced colitis and significantly reduced the number and size of 

intestinal tumors. Thus, it seems that the anti-inflammatory and wound-healing effects per se of 

epithelial INSR signaling are chemopreventive. Based on these results, a phase I study has been 

initiated in which patients with active UC are treated with rectally administered insulin as an 

add-on treatment to their already established anti-inflammatory therapy, and a phase 2 study is 

currently being designed.  

 

Metabonomics 

Accumulating evidence from my studies suggests that mucosal wound-healing is vital for 

achieving completely quiescent disease and that lipids are central elements in the process. My 

most current work consequently focuses on the 

lipidomic trajectory during wound-healing in the colonic 

mucosa of healthy control subjects and patients with UC 

in histologic remission.132 I included 21 patients with 

UC and 9 healthy control individuals and subjected them 

to the wound-healing assay. With this approach, I was 

able to describe kinetically a more aggressive 

inflammatory response to intestinal wounding (Fig. 13). 

This is in line with previous findings by others131 
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Figure 2. Wounds and histology. A) Modified Geboes and wound scores, median and interquartile range. The majority of subjects had a wound score of 3 (UC) or 2 
(Control) at day 7 explaining the lack of range. B) Illustrative example of the histological appearance of the injury with acute inflammation. Black arrows, the edges of epithelial 
cells; green arrows, cuboidal regenerative epithelial cells; red arrows, flattened elongated wound associated epithelial (WAEs) cells. WAEs first appear after 48 hours. 

 

Multivariate analysis 
PCA score plots from phospholipid and 

eicosanoid profiles containing all 90 samples 
identified five outliers. All five participants, from 
which these outliers originated, were reviewed in 
respect to demographics, clinical, and paraclinical 
parameters, including lipidomic data, but no obvious 
explanation could be identified, and the samples were 
consequently included in subsequent analyses.  

 OPLS-DA models based on phospholipids were 
valid at all three time points during wound healing in 
both UC and controls, and corresponding significant 
changes were identified in several phospholipids with 
both increased and decreased levels (Figure 5A-F, H). 
Especially UC had a high number of significantly 
(p<0.05) affected phospholipids, and the difference 
between UC and controls reached significance at day 
seven (Figure 5G), where levels of various species of 
phosphatidylserine (PS), phosphatidylinositol (PI), 

PG, PC, PA as well as LPA were significantly lower in 
patients with UC. The metabolic trajectory of this 
process is illustrated in Figure 5I, where patients with 
UC and controls had a similar starting point, but 
subsequently the paths diverged towards day two, 
and the return (i.e., day seven during wound healing) 
was notably different. 

OPLS-DA models for the eicosanoids were valid 
when day two and seven were compared to day zero 
for both UC and controls (Figure 6A-E). Again, UC 
had a higher number of significantly (p<0.05) affected 
eicosanoids as compared to controls, but no 
significant differences were found between UC and 
controls. Thus, significant temporal changes in the 
levels of eicosanoids were identified during 
wounding and wound healing, but the metabolic 
trajectory did not differ significantly between UC and 
controls. 

Figure 13 

Modified from Figure 2A from Bjerrum et al.132 
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including one of my own studies,130 in which patients with quiescent UC have a pronounced 

postinjury response dominated by early neutrophil engagement contrasting a more diminished 

innate response in the normal human intestine with no significant recruitment of neutrophils 

within 24 hours. Interestingly, the changes in neutrophil recruitment to innate stimuli does not 

seem to be restricted to the intestine in UC because similar findings have been seen using a 

model of acute skin injury in patients with UC.131,211,212 This is in contrast to patients with CD in 

whom a delayed neutrophil response is dominant,131 which illustrates a profound difference in 

the pathophysiology between UC and CD during flare initiation. Thus, dampening the 

hyperresponsive mode of action in quiescent UC could be a completely new approach to long-

term maintenance treatment and a potential concomitant treatment strategy to conventional anti-

inflammatory treatment algorithms. As a proof of concept, my colleagues and I demonstrated an 

enrichment of the innate lymphoid cell 3 (ILC-3) marker CD117 prior to injury in patients with 

quiescent UC, and after injury, a significant increase was seen in the ILC-3-secreted IL-17A and 

IL-22.130 ILCs are morphologically comparable to T cells but without antigen-specific 

receptors,213 and they play a vital part in the innate responses against invading pathogens through 

secretion of these cytokines,214 which stimulate epithelial cells to produce antimicrobial peptides 

and chemokines attracting neutrophils.215 Colitis models propose that augmented ILC-3 

activation exacerbates experimental colitis through the effects of IL-17A and IL-22.216 In 

contrast, deficiency of IL-22 and impaired ILC-3 function also aggravates experimental colitis 

and various microbial infections.217 These opposing effects of IL-22 seem to be the consequence 

of spatiotemporal circumstances during inflammation in which coexpressed IL-17A and IL-22 

act synergistically to promote chemokine expression, neutrophil recruitment, and inflammation, 

whereas, in the absence of IL-17A, IL-22 conveys tissue-protective functions by promoting the 
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integrity of the epithelial barrier.218 As a consequence, UTTR1147A (IL-22Fc, a fusion protein 

of human IL-22 linked to a crystallizable fragment [Fc]) is being developed as a novel, 

nonimmunosuppressive treatment to stimulate epithelial healing and repair and has gone through 

phase I219 and II trials (ClinicalTrials.gov identifier NCT03558152). The phase 2 trial recruited 

patients with moderate to severe active UC, and publicly available data are eagerly awaited 

because this might be the first-ever IBD drug supporting the wound-healing process. 

The prolonged observation and sampling period (2–7 days after wounding) enabled me to 

describe for the first time the normal colonic 

wound-healing process and thus also a delayed 

epithelial restitution (Fig. 13) in patients with 

UC that correlated with distinct changes in the 

lipidomic profile of especially phospholipids 

(Figs. 14 and 15).132 Ultimately, these results 

may help to guide future medical 

treatment regimens because several 

potential therapeutic opportunities for the 

recovery from active disease and 

subsequent regeneration were identified, 

especially with respect to the metabolites 

of lyso/phosphatidylcholine (LPC/PC),137,170,220–227 lyso/phosphatidic acid (LPA/PA),12,136,228–231 
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Figure 5. OPLS-DA models based on phospholipids. A-G: Phospholipids with correlation coefficients above 0.41 (UC) and 0.60 (controls) indicating significant differential 

power in the corresponding valid OPLS-DA models. Red, increased levels. Blue, decreased levels. H: Q2, cross-validation parameter indicating the predictability of the model. 

R2X, the fraction of the variation of the variables explained by the model. P-values (significant below 0.05) are based on the CV-ANOVA. I: Metabolic trajectory generated from 

the average of PCA scores of controls (orange color) and UC (blue) during wound healing. Lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), phosphatidic acid (PA), 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine. 
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Figure 7. Correlation between the wound score and phospholipids. Correlation analysis between wound scores (X-matrix, w*c[1]) and phospholipids (Y-matrix, 
w*c[2]) based on an OPLS-DA model and corresponding loadings. Q2, cross-validation parameter indicating the predictability of the model in relation to its statistical validity. R2, 
the fraction of the variation of the variables explained by the model. Lysophosphatidic acid (LPA), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), sphingomyelin (SM). 

 

Finally, a correlation analysis based on an 
OPLS-DA model and corresponding loadings was 
performed between wound scores (X-matrix) and 
phospholipids (Y-matrix) (Figure 7). As seen in this 
figure, wound scores were highly correlated with the 
phospholipid profile - especially with changes in 
sphingomyelin (SM) and phosphatidylethanolamine 
(PE) species - which were positively correlated with 
the wound scores, whereas levels of PG and LPA were 
negatively correlated. A similar model was built 
between wound scores and eicosanoids, but this 
model turned out to be invalid, i.e., failed 
cross-validation and the permutation test, and hence 
no correlation could be identified between the wound 
score and eicosanoids (data not shown).  

Discussion 
The human in vivo wound healing assay 

demonstrated that patients with even quiescent UC 
have an increased inflammatory response to intestinal 
wounding. This is in alignment with recently 
published data where inflammatory markers in an in 
vivo injury model showed rapid engagement of innate 
cytokines like interleukin (IL)- 1a/b and adaptive 
IL-17A along with recruitment of neutrophils and 
innate lymphoid cells in quiescent UC [23], and with a 
correlation between the histological grade of 
inflammatory infiltrate and wound scores. This 
UC-specific pattern of disrupted intestinal wounding 
and wound healing correlated in the current study 
with distinctive changes in the mucosal lipidome. 

Thus, both univariate, multivariate, and correlation 
analyses characterized the control group with only 
few and temporal changes contrasting the more 
profound and sustained chances in UC.  

Previous studies have uncovered significant 
decreased amounts of LPC and PC in the colonic 
mucus of patients with UC [25–27], and human 
lipidomic studies on serum/plasma [28–30] as well as 
on colonic biopsies [31] have identified extensive 
alterations in the lipid composition with changed LPC 
and PC species. The low levels of LPC, and especially 
PC as seen in UC, might simply be due to an 
insufficient re-establishment of the mucus layer 
post-wounding, but might also be directly causative 
as different species and isomers of both LPC and PC 
act as pro- or anti-inflammatory stimuli [32]. A cell 
culture-based study suggests that PC inhibits the 
inflammatory response caused by tumor necrosis 
factor (TNF)-α through changes in the properties if 
the cell membrane, thus interfering with the signal 
transduction [33]. Human functional studies are, 
however, scarce, but a phase III placebo-controlled 
trial of a modified release of PC has shown to 
significantly alleviate disease activity in mesalazine- 
refractory UC [16], Whether this effect is a 
consequence of the anti-inflammatory properties; 
improvement of the mucus barrier, or both is, 
however, still not clarified.  

A similar therapeutic effect has been achieved 
with local LPA in experimental colitis models by 
modulating intestinal epithelial migration, prolifera-

Correlation between the wound score (X-matrix, w*c[1]) and 
phospholipids (Y-matrix, w*c[2]) Lysophosphatidic acid 
(LPA), phosphatidylethanolamine (PE), phosphatidylglycerol 
(PG), sphingomyelin (SM). 

Metabolic trajectory generated from the average of 
PCA scores of controls (orange color) and UC (blue) 
during wound healing 

Figure 14 

Figure 15 

Figure 5I from Bjerrum et al.132 

Figure 7 from Bjerrum et al.132 
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phosphatidylinositol (PI),232,233 phosphatidylglycerol (PG),234,235 phosphatidylethanolamine 

(PE),236 phosphatidylserine (PS),237 prostaglandin E1 (PGE1),238,239 and PGD2. 240 It is, however, 

extremely difficult to predict the treatment outcome with these metabolites or combinations 

thereof because they are only poorly described in relation to intestinal wound-healing. 

Furthermore, no similar human in vivo studies have ever been performed, and our current 

knowledge of lipids and intestinal wound-healing is based only on in vitro and animal studies. 

Nevertheless, a few human studies have previously demonstrated that lipid-based treatment 

strategies may be an alternative or concomitant treatment regime. Thus, orally delivered PC has 

been shown to improve mucosal wound-healing and may subsequently help to reconstitute the 

structure and density of the mucus to serve as a protective mechanical shield in patients with 

UC.241,242 Finally, in line with my hypothesis on an insufficient wound-healing process in the 

steroid-dependent UC phenotype, a phase 2 study with PC in steroid-refractory patients with UC 

(i.e., chronically active disease in spite of ongoing steroid treatment) demonstrated significant 

improvement or successful steroid withdrawal in 50% of PC-treated patients compared with 10% 

in the placebo group (p = 0.002).243 In a subsequent phase 3 study, the primary endpoint was met 

with a significantly higher absolute reduction in the simple clinical colitis activity index 

(SCCAI) in patients treated with PC compared with placebo. More important, histologic 

remission was achieved in 41% of the PC-treated group compared with 20% of the placebo-

treated group (p = 0.016).137 

 

4. Conclusion and Future Perspective 

With the introduction of high-throughput transcriptomics and metabonomics as well as advanced 

multivariate analyses, I and others expected to be able to apply and combine these technologies 
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and bioinformatics to develop clinically useful diagnostic tools in the field of IBD. I now know 

that the creation of omics-based diagnostic IBD tests with meaningful sensitivities and 

specificities is a challenging task in the current clinical setting - but why? Based on the data 

presented herein, an obvious explanation could be an almost rudimentary simplified phenotyping 

of IBD (i.e., UC and CD). At the molecular level, my studies clearly show that the inflammatory 

process in left-sided UC is distinct from pancolitis and should be considered as unique 

phenotypes with differences in their prognosis and need for tailored treatment strategies. IBD 

precision medicine consequently has the opportunity to advance significantly because a range of 

novel treatment targets particularly in pancolitis was identified (i.e., INSRA and MKNK), of 

which insulin enemas are currently being tested in a phase I trial. However, based on current 

knowledge, MKNK might be an even better treatment target because it is a centrally located hub 

in several inflammation-associated signaling pathways and may function as both an anti-

inflammatory and a chemopreventive treatment strategy.  

Omics analyses also revealed quiescent UC as a distinct molecular phenotype, at least at 

the metabonomics level. It could be argued that this does not represent an actual phenotype but 

rather is a consequence of unambitious treatment targets in UC. Currently, mucosal healing is the 

ultimate treatment target in UC, in accordance with the updated STRIDE recommendations, but I 

believe that with these results, future treatment goals should be set at the molecular level. This 

obviously requires that future studies can correlate metabonomics remission (i.e., molecularly 

quiescent disease) with an improved course of UC in terms of extraintestinal manifestations, 

flares, hospitalization, colectomy, and development of CRC.  

A prerequisite for molecular healing is mucosal wound-healing. Here I have demonstrated 

the presence of a hyperresponsive innate immune system in the colonic mucosa of patients with 
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UC in remission and subsequent delayed wound-healing that correlates with a distinct lipidomic 

trajectory. Dampening the hyperresponsiveness (e.g., via IL-22Fc treatment) and promoting the 

healing process using lipids (e.g., via PC treatment) either as local enemas or in delayed-release 

formulas as polymeric nanoparticles represent novel therapeutic avenues that needs to be tested 

and validated. However, the molecular characterization of the wound-healing process has only 

just been initiated, and further metabologenomics and transcriptomics analyses are highly 

warranted. 

Serum metabonomics analyses identified a proatherogenic lipid profile in patients with 

active IBD that was eliminated with successful biologic treatment. Based on these findings and 

the known increased cardiovascular morbidity among young adults, I recommend that future 

IBD treatment algorithms include advice on lifestyle interventions and statin treatment in young 

patients with frequent flares or chronically active disease.  

The same serum-based metabonomics study also indicated that patients with UC not 

responding to biologic treatment might have a unique metabolic profile. Subsequent and more 

recent metabonomics studies have confirmed this in serum and feces, and fecal-based metabolic 

profiles of bile acids, lipids, and SCFAs are already available for clinical testing and 

validation. The mechanism by which biologics induce these above-mentioned changes is, 

however, unknown and requires further molecular characterization of the mucosa-related 

microbiota and its interplay with host omics during treatment. 

Lastly, it should be noted that a challenging aspect of IBD phenotypes is the apparent 

dynamic structure: patients with IBD initially responding to anti-TNF treatment will lose their 

response as a result of pharmacodynamic changes in the primary inflammatory driver of their 

disease,244 and a significant fraction of patients will experience either more extensive disease or 
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regression (i.e., from left-sided colitis to pancolitis or vice versa).245 Not only do we need to 

accept the existence of far more complex IBD phenotypes, we also need to acknowledge the 

dynamic structure and thus the concept of adaptive precision medicine. 

With this dissertation I propose the existence of more detailed molecular phenotyping, 

ambitious molecular treat-to-target actions, novel wound-healing treatment strategies, and the 

use of adaptive precision medicine. 
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6. Currently Available Human Adult IBD Metabonomics Studies 

 
Study Patients (no) Technique Primary results 

Bezabeh et al.73 2001 UC (46), CD (39), C 
(25) 

NMR Differentiation of UC, CD and C 

Ehehalt et al.221 2004 UC (11), CD (7), C (21) ESI/MS Decreased levels of 
(lyso)phosphatidylcholine in 
quiescent UC, not in CD 

Braun et al.220 2009 UC (21), CD (10), C 
(29) 

ESI/MS Decreased levels of 
(lyso)phosphatidylcholine in 
quiescent and active UC, not in CD 

Balasubramanian et al.246 
2009  

UC (31), CD (26), C 
(26) 

NMR Decreased levels of amino acids and 
membrane components in IBD 

Bjerrum et al.74 2010 UC (68), C (25) NMR Differentiation of UC and C 
Increased levels of amino acids and 
decreased levels of membrane 
components in UC 

Sharma et al.75 2010 UC (5), CD (5), C (26) NMR Decreased levels of amino acids and 
membrane components in IBD 

Ooi et al.247 2011 UC (22) GC/MS Decreased levels of amino acids and 
TCA cycle molecules in UC  

Sewell et al.120 2012 CD (5), C (5) ESI/MS Decreased phosphatidylinositol in 
CD 

Masoodi et al.248 2013 UC (54) LC/MS Increase in eicosanoids in inflamed 
tissue compared to paired 
uninflamed tissue 

Pearl et al.249 2014 UC (69), C (69) LC/MS, 
GC/MS 

Changes in polyunsaturated fatty 
acids in inflamed tissue, changes 
correlate with severity of 
inflammation. 

Bjerrum et al.III 2014 UC (43), C (15) 1H NMR Differentiation of active UC, inactive 
UC and C 
Identification of UC sub phenotypes 
Integration of omics 

Rantalainen et al.IV 2015 UC (43), C (15) NMR Molecular characterization of UC 
sub phenotypes with combined 
metabolomics and transcriptomics 

Gobbetti et al.250 2017 IBD (10), C (11) LC/MS Identification of increased levels of a 
range of resolvins in the colon of 
patients with active IBD compared to 
controls 

Diab et al.251 2019 UC (20), C (10) LC/MS Increase in eicosanoids and decrease 
in endocannabinoids in active UC 

Bazarganipour et al.166 2019 UC (59) LC/MS Decreased levels of sphinganine and 
dihydroceramides in inflamed 
colonic tissue compared with 
noninflamed tissue from the same 
patients 

Table I. Metabonomics studies based on intestinal biopsies from patients with 
inflammatory bowel disease 
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Table 1. Metabonomics studies based on intestinal tissue samples from patients with 
inflammatory bowel disease 

Table II. Metabonomics studies based on fecal samples from patients with inflammatory 
bowel disease 

Branched chain fatty acid (BCFA), controls (C), Crohn´s disease (CD), electrospray ionization 
(ESI), gas chromatography (GC), liquid chromatography (LC), mass spectrometry (MS), nuclear 
magnetic resonance (NMR), tricarboxylic acid (TCA), ulcerative colitis (UC) 
 

 

 

 

 

Diab et al.225 2019 UC (33), C (14)  LC/MS Differentiation of active UC, inactive 
UC and C 
Changes of phospholipids in both 
active and inactive UC 

Diab et al.252 2019 UC (28), C (14) LC/MS, 
GC/MS 

Altered metabolic pathways in UC; 
phospholipids, linoleic acid, 
glutamate, tryptophan, butyrate, and 
glutathione 

Santoru et al.253 2021 UC (82), CD (50), C 
(51) 

GC/MS No differentiation between UC and 
CD, but UC vs C and CD vs C with 
higher concentrations of aspartate, 
glutamate, glutamine, glycine, and 
ornithine, low levels of fumarate, 
glycerol, phosphate, lactate, myo-
inositol, aoleic acid in IBD vs C 

Adegbola et al.254 2021 CD (20), C (30) LC/MS Differentiation between CD fistulas 
and idiopathic fistulas with 19 and 2 
differentially expressed metabolites 
and lipids, respectively  

Frau et al.255 2021 UC (20), CD (23), C 
(20) 

GC/MS Correlation between fungi 
microbiome and level of BCFA 

Bjerrum et al.VIII 2022 UC (21), C (9) LC/MS Lipidomic trajectories characterize 
delayed colonic mucosa healing 

Study Patients (no) Technique Primary results 

Kruis et al.111 1986 UC (6), CD (10), C (5) GC Increased bile acids in CD and decreased in 
UC compared with C 
Increase in primary bile acids and decrease 
in secondary bile acids in IBD compared 
with C 

Marchesi et al.112 2007 UC (10), CD (10), C 
(13) 

NMR Differentiation of active UC, active CD, and 
C 
Increased levels of amino acids in IBD 
Decreased levels of SCFA, methylamine and 
trimethylamine in especially CD  

Garner et al.113 2007 UC (18), C (30) 
 

GC/MS Differentiation of UC and C 
Lower range of VOCs in UC than C 
High number of alkenes and low number of 
alkanes and nitrogen- and sulfate containing 
compounds in UC 
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Jansson et al.114 2009 14 (CD), C (20) ICR-
FT/MS 

Differentiation of quiescent ilieal CD, 
colonic CD, and C, young and adult 
Differences in the metabolism of tyrosine, 
phenylalanine, bile acids, fatty acids, 
arachidonic acid, and prostaglandins 

Le Gall et al.115 2011 UC (13), IBS (10), C 
(22) 

NMR Differentiation of UC and C 
Increased levels of taurine, cadaverine and to 
some extent lactate 

Vigsnaes et al.116 2013 UC (8), C (4) LC/MS Increase in bile acids, tryptophan, and 
phenylalanin  

Walton et al.117 2013 UC (20), CD (22), IBS 
(26), C (19) 

GC/MS Differentiation of CD and C 
Increase in ester and alcohol derivatives of 
SCFA  
Normalization of VOCs after treatment  

De Preter et al.153 2013 CD (67), C (49) GC/MS Differentiation of CD and C 
Decreased levels of median-chain fatty acids 
in CD 
Inulin induced increase in butyrate and 
acetaldehyde,  

Duboc et al.148 2013 UC (30), CD (12), C 
(29) 

LC/MS Impaired metabolism of bile acids in IBD 
characterized by defective deconjugation, 
transformation and desulphation 

Kumari et al.149 2013 
 

UC (26), C (14) GC-FID Decreased levels of SCFA in severe active 
UC 

Machiels et al.151 2014 UC (127), C (87) GC/MS Decreased levels of SCFA in UC 

Bjerrum et al.V 2015 UC (48), CD (44), C 
(21) 

NMR Differentiation of active UC, quiescent UC 
and C, Increased levels of amino acids and 
lactate in UC, Decreased levels of SCFA in 
UC 

De Preter et al.256 2015 UC (68), CD (83), C 
(40) 

GC/MS Differentiation of UC, CD, and C 
Decreased levels of median-chain fatty acids 
in IBD 

Bussche et al.156 2015 UC (8), CD (5), C (10) LC/MS Differentiation UC, CD and C 
Validation of the metabolic fingerprinting 
workflow for feces and in vitro digestive 
fluids 

Ahmed et al.155 2016 UC (100), CD (117), C 
(109) 

GC/MS Differentiation of active CD, quiescent CD 
and C, but not active UC, quiescent UC and 
C 

Walton et al.154 2016 CD (17) GC Enteral feeding reduces SCFA, 1-propanol. 
1-butanol, and methyl and ethyl esters of 
SCFSs 

Lee et al.257 2017 UC (22), CD (31), C 
(19) 

FT-
ICR/MS 

Differentiation of UC, CD and C. 
Oral iron therapy differentially affects the 
fecal metabolome compared with iv therapy  

Santoru et al.150 2017 UC (82), CD (50), C 
(51) 

GC/MS, 
LC/MS, 
and  
NMR 

Differentiation of IBD and C, not between 
UC and CD, increased amino acids and 
lipids in IBD and decreased b group vitamins 

Franzosa et al.77 2019 
 

UC (76), CD (88), C 
(56) 

LC/MS Differentiation of IBD and C 
In IBD increased sphingolipids and bile 
acids, decreased triacylglycerols and 
tetrapyrols 
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Table III. Metabonomics studies based on blood samples from patients with 
inflammatory bowel disease 

Controls (C), Crohn´s disease (CD), flame ionization detector (FID), Fourier-Transform Ion-
Cyclotron-Resonance (FI-ICR), gas chromatography (GC), irritable bowel syndrome (IBS), 
liquid chromatography (LC), mass spectrometry (MS), nuclear magnetic resonance (NMR), short 
chain fatty acid (SCFA), tricarboxylic acid (TCA), tumor necrosis factor (TNF), ulcerative colitis 
(UC), volatile organic compounds (VOC) 
 
 
 
 
 
 

Lloyd-Price et al.84 
2019 

UC (38), CD (67), C 
(27) 

LC/MS Reduced diversity and changes in bile acids, 
SCFA, and other metabolites (NB pediatric 
and adult cohort, mixed activity) 

Weng et al.159 2019 UC (107), CD (173), C 
(42) 

GS/MS, 
LC/MS 

Decrease in especially long- and medium-
chain fatty acids, bile acids, and vitamin 
compounds in IBD  

Aden et al.78 2019 UC (6), CD (3) LC/MS Characterize the changes (butyrate and 
acetaldehyde) in the fecal metabolome in 
response to anti-TNF treatment,  

Paramsothy et al.258 
2019 

UC (26) LC/MS Responders to FMT increased SCFA and 
secondary bile acids 

Ding et al.79 2020 UC (10), CD (76), C 
(13) 

LC/MS Candidate biomarker identification (bile 
acids and lipids) predicting anti-TNF 
treatment response in CD  

Sinha et al.80 2020 UC pouch (17), C 
pouch (7) 

LC/MS Low levels of the secondary bile acids 
deoxycholic acids and lithocholic acid 

De Freitas Lins Neto 
et al.259 2020 

UC (11), CD (10), C 
(15) 

NMR Unknown activity status of IBD patient, 
Differentiation of CD and C, but not UC and 
C, CD vs UC not explored 

Fang et al.81 2021 UC (50), CD (79) LC/MS Surgery lowers the metabolome diversity 

Yang et al.82 2021 UC (32), C (23) LC/MS Low microbiome diversity and high primary 
bile acids 

Mills et al.15 2022 UC (40+ 73), CD (117), 
C (20) 

LC/MS Multi-omics identify B. vulgatus derived 
proteolysis contributing to UC severity 

Di´Narzo et al.14 2022 UC (484), CD (464), C 
(465) 

LC/MS Integrative genetics and metabolomics 
identify 173 genetically controlled 
metabolites some associated with clinical 
and endoscopic disease status 

Study Patients (no) Technique Primary results 

Forrest et al.260 2002 UC (7), CD (5), C (12) LC Increased levels of kynurenine in IBD 

Bene et al.167 2007 CD (100), C (94) ESI/MS Carnitine ester profiles differ 
significantly in CD 

Gnewuch et al.261 2009 UC (161), CD (197), C 
(310) 

LC/MS Total bile acid, total bile acid 
conjugate, and total bile acid 
glycoconjugate levels decreased only 
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in CD, total unconjugated bile acid 
levels decreased only in UC 

Bjerrum et al.74 2010 UC (74), C (25) NMR No difference between active UC, 
quiescent UC, and C in PBMCs 

Ooi et al.247 2011 UC (13), CD (21), C 
(17) 

GC/MS Differences in 27 amino acids 
including TCA cycle metabolites in a 
mixed cohort of active and quiescent 
UC and CD 

Williams et al.121 2012 UC (20), CD (24), C 
(23) 

NMR Differentiation of quiescent UC, CD, 
and C with changes in primarily lipids, 
choline metabolites, and amino acids 

Schicho et al.105 2012 UC (20), CD (20), C 
(40) 

NMR Differentiation of active IBD and C, 
but not between active UC and active 
CD 

Gupta et al.262 2012 CD (25), C (11) LC Decreased levels of tryptophan in 
active CD 

Sewel et al.120 2012 CD (41), C (24) LC/MS No difference between quiescent CD 
and C in unstimulated and stimulated 
macrophages from PBMCs 

Zhang et al.101 2013 UC (20), C (19) NMR Differentiation of active UC and C 
with increased levels of glucose, 3-
hydroxybutyrate, and phenylalanine, 
and reduced levels of lipids 

Fathi et al.123 2013 CD (26), C (29) NMR Differentiation of active CD and C 
with a low level of lipid in CD 

Duboc et al.148 2013 UC (30), CD (12), C 
(29) 

LC/MS No difference in bile acids between 
IBD and C except for low levels of 
secondary bile acids in active IBD 

Iwamoto et al.263 2013 UC (10), CD (21), C 
(26) 

LC/MS Bile acid malabsorption in CD 
associates with deactivation of 
pregnane X receptor and its anti-
inflammatory properties 

Dawiskiba et al.107 2014 UC (24), CD (19), C 
(17) 

NMR Differentiation of active IBD and C 
with reduced lipids and choline and 
increased phenylalanine, acetoacetate, 
formate, 3-hydroxybutyrate, and 
lactate, no difference between UC and 
CD 

Fathi et al.124 2014 CD (26), C (29) NMR Differentiation of CD and controls 
primarily based on high levels of 
isoleucine and low levels of valine in 
CD 

Kohashi et al.161 2014 UC (120), CD (39), C 
(120) 

GC/MS Differentiation of active UC, quiescent 
UC, CD, and C with decreased levels 
of TCA-related metabolites, urea-
related metabolites and several amino 
acids 

Yau et al.264 2014 UC (19), CD (25), C (9) LC/MS, 
GC/MS 

Increased levels of angiotensin IV, 
diphthamide, and GM3 ganglioside in 
CD. Quinolinic acid increased in 
active CD and correlated with CRP 
and CDAI 

Wilson et al.265 2015  UC (33), CD (73), C 
(373) 

LC/MS Low level of trimethylamine-N-oxide 
in IBD, especially in active UC. High 
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level of choline in IBD, and no 
difference in carnitine levels 

Fan et al.165 2015 UC (16), CD (24), C 
(84) 

LC/MS Profound differences in lipid profile of 
CD, but not in UC compared to C 

Hisamatsu et al.162 2015 UC (355) LC/MS Low level of histidine predicts 1-year 
relapse 

Nikolaus et al.266 2017 UC (211), CD (224), C 
(291) 

LC Targeted metabonomics with inverse 
correlation between tryptophan and 
disease activity 

Bjerrum et al.VI 2017 UC (38), CD (49), C 
(37) 

NMR Distinct metabolic trajectory in UC 
and CD during infliximab treatment 
with changes in lipids, phospholipids, 
and pyruvate metabolites  

Scoville et al.164 2018 UC (20), CD (20), C 
(20) 

LC/MS Profound differences in amino acids, 
lipids and TCA cycle metabolites of 
CD, but only few in UC compared 
with C 

Murakami et al.267 2018 UC (12), CD (14), C 
(30) 

LC/MS Decreased Clostridium subcluster 
XIVa correlates with reduced primary 
bile acids 

Sofia et al.268 2018 UC (99) LC/MS, 
GC/MS 

Increased kynurenine/tryptophan ratio 
correlates with degree of endoscopic 
inflammation in UC 

Murgia et al.170 2018 UC (78), CD (50), C 
(60) 

LC/MS Differentiation of IBD and C with 
changes in primarily 
phosphatidylcholine, 
lysophosphatidyl-choline, fatty acids, 
and several amino acids 

Probert et al.163 2018 UC (40) NMR Metabolic profiles predict progression 
and differentiate between low and high 
endoscopic and histological activity 

Lai et al.269 2019 CD (20), C (10) LC/MS Enhanced ß-oxidation of fatty acids 
(docosahexaenoic acid, linolenic acid, 
arachidonic acid) and altered amino 
acid metabolism (tryptophane, 
histidine, phenylalanine) 

Whiley et al.270 2019 UC (19), C (10) LC/MS Decreased levels of picolinic acid and 
xanthurenic acids and increased level 
of kynurenine in UC 

Sun et al.271 2019 UC (48), C (30) LC/MS Low level of trimethylamine-N-oxide 
in UC, especially in active UC. High 
level of sphingosine-1-phosphate in 
UC and associated with Roseburia, 
Klebsiella, and Escherichia-Shigella 

Bazarganipour et al.166 2019 UC (98), C (25) LC/MS Changes in sphingolipids, free fatty 
acids, lysophosphatidylcholines, and 
triglycerides correlate with disease 
severity in UC 

Roda et al.272 2019 UC (40), CD (40), C 
(29) 

LC/MS Secondary bile acids increase after 
anti-TNF treatment in CD patients and 
restore the bile acid profile 

Dudzinska et al.273 2019 UC (27), CD (28), C 
(50) 

LC Low level of tryptophane in IBD and 
low level of kynurenic acid during 
remission compared with active 
disease 
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Controls (C), Crohn´s disease (CD), Crohn´s disease activity index (CDAI), C-reactive protein 
(CRP), electrospray ionization (ESI), gas chromatography (GC), irritable bowel syndrome (IBS), 
liquid chromatography (LC), mass spectrometry (MS), nuclear magnetic resonance (NMR), 
peripheral blood mononuclear cells (PBMCs), tricarboxylic acid (TCA), tumor necrosis factor 
(TNF), ulcerative colitis (UC) 
 
 
 

Manfredi et al.169 2019 UC (13), CD (15), C 
(17) 

LC/MS, 
GC/MS 

Differentiation of active UC, active 
CD, and C using integrated proteomics 
and lipidomics analyses and associated 
with coagulation, fibrinolysis, and 
acute phase response processes and 
low levels of free fatty acids 

Guan et al.224 2020 IBD (129), C (81) LC/MS Differentiation of IBD and C with 
profound changes in bile acids, 
eicosanoids, and 
glycerophospholipids,  

Giovanni et al.171 2020 CD (35), C (33) GS/MS Optimization of the analytical 
workflow  

Tefas et al.168 2020 UC (17), CD (5), C (24)  LC/MS Differentiation between UC and CD 
and between IBD and C with changes 
in glycerophospholipids, linoleic acids, 
and sphingolipids 

Ding et al.79 2020 UC (19), CD (76), C 
(13) 

LC/MS Candidate biomarker identification 
(bile acid and lipids) predicting anti-
TNF treatment response in CD  

Krzystek-Korpacka et al. 
2020 

UC (48), CD (52), IBS 
(18), C (40) 

LC/MS Identification of deregulated 
arginine/Nitric oxide pathway in both 
active and quiescent CD and UC 

Borren et al.172 2020 UC (56), CD (108) LC/MS Biomarker identification predicting 
relapse over 2 years in patients with 
quiescent disease 

Borren et al.83 2021 UC (60), CD (106) LC/MS 
 

Fatigue in quiescent IBD associates 
with reduced levels of methionine, 
tryptophan, proline, and sarcosine 
including a lower alpha diversity of 
the microbiome 

Horta et al.274 2021 UC (20), CD (27) LC/MS Lipidome of UC and CD fatigue with 
decreased levels of phospholipids and 
eicosanoids compared to non-fatigue 

Notararigo et al.125 2021 UC (9), CD (18), C (10) NMR Homoserine/methionine and 
isobutyrate discriminate inactive CD 
and C, creatinine, proline, tryptophane 
discriminate inactive UC and C 

Santoru et al.253 2021 UC (82), CD (50), C 
(51) 

GC/MS No differentiation between UC and 
CD, but UC vs C and CD vs C with 
higher concentrations of 
hydroxybutyrate, citrate, lactate, 
proline, threonine, urea, and sorbitol 

Di´Narzo et al.14 2022 UC (484), CD (464), C 
(465) 

LC/MS Integrative genetics and metabolomics 
identify 173 genetically controlled 
metabolites some associated with 
clinical and endoscopic disease status 
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Controls (C), Crohn´s disease (CD), gas chromatography (GC), irritable bowel syndrome (IBS), 
liquid chromatography (LC), mass spectrometry (MS), nuclear magnetic resonance (NMR), short 
chain fatty acid (SCFA), tumor necrosis factor (TNF), ulcerative colitis (UC) 

Study Patients (no) Technique Primary results 

Cracowski et al.102 2002 CD (23), C (23) GC/MS Increased F2-isoprostanes in CD 

Stanke-labesque et al.103 2008 UC (28), CD 
(32), C (30) 

LC/MS Increased leukotriene E4 in in active UC 
and CD 

Williams et al.104 2009 UC (60), CD 
(86), C (60) 

NMR Differentiation of UC, CD and C 
Low levels of hippurate and 4-cresol, high 
levels of formate in CD. 

Bjerrum et al.74 2010 UC (74), C (25) NMR No difference between active UC, quiescent 
UC, and C. 

Schicho et al.105 2012 UC (20), CD 
(20), C (40)  

NMR Differentiation of IBD and C, not between 
UC and CD 
Low levels of Hippurate and low levels of 
lactate and tryptophan. 

Stephens et al.106 2013 UC (30), CD 
(30), C (60) 

NMR Differentiation of UC, CD, and C 
Corrected for surgery and anti-TNF 
treatment the difference disappeared 
between UC and CD.  

Dawiskibat et al.107 2014 UC (24), CD 
(19), C (17) 

NMR Differentiation of active IBD and quiescent 
IBD, active IBD and C, and quiescent UC 
and C 

Alonso et al.108 2016 UC (402), CD 
(399) C (289) 

NMR Differentiation of UC, CD and C 
Differentiation of active and quiescent CD 
Low levels of hippurate, citrate, unknown 
7, and 3-hydroxyisovaleric acid 

Keshteli et al.109 2017 UC (20) LC/MS, 
NMR 

Urine metabonomics predicts UC relapse 
within 12 months. 

Keshteli et al.97 2018 CD (38) LC/MS, 
NMR 

Postoperative unique urinary metabolomic 
fingerprint in patients with endoscopic 
recurrence compared to remission. 

Alothaim et al.98 2018 UC (40), C (17) LC/MS Development of LC/MS for optimized 
detection of SCFA 

Li et al.101 2019 CD (9) NMR Significant increase in indoxyl sulfate, 4-
hydroxyphenylacetate, creatinine, 
dimethylamine, glycylproline, hippurate, 
and trimethylamine oxide at the first fecal 
microbiota transplantation  

Keshteli et al.99 2019 UC (53), IBS 
(39), C(21) 

GC/MS, 
LC/MS 

Differentiation between IBS, quiescent UC 
and C.  

Piestansky et al.100 2019  CD (13), C (10) CE/MS, 
LC/MC 

Validation of the metabolic profiling of 20 
amino acids 

Ding et al.79 2020 UC (10), CD 
(76), C (13) 

LC/MS Candidate biomarker identification 
(histidine and cysteine) predicting anti-TNF 
treatment response in CD. 

Table IV. Metabonomics studies based on urine samples from patients with inflammatory 
bowel disease 
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Controls (C), Crohn´s disease (CD), gas chromatography (GC), ion mobility spectrometer (IMS), 
ileal pouch-anal anastomosis (IPAA), mass spectrometry (MS), selected ion flow tube (SIFT), 
ulcerative colitis (UC), volatile organic compounds (VOC) 
 

 

Study Patients (no) Technique Primary results 

Kokoszka et al.85 1993 UC (1), CD (14), Non-IBD 
(17) 

GC Increased pentane predicts intestinal 
inflammation 

Sedghi et al. 861994  UC (17), C (14) GC Increased level of ethane, but not 
pentane in active UC 

Pelli et al.89 1999 UC (10), CD (10), C (10) GC Increased levels of pentane, propane 
and ethane in active IBD 

Wendland et al.90 2001 CD (37), C (37) GC Increased levels of pentane, ethane, 
and isoprostane in both active and 
inactive CD 

Dryahina et al. 912013 UC (28), CD (20), C (140) SIFT/MS Increased levels of pentane in IBD 
patients in an on-line, real-time, 
single breath test 

Bodelier et al.94 2015 CD (191), C (110) GC/MS Differentiation between active CD, 
inactive CD and, C based on a set of 
10 discriminatory VOCs 

Hicks et al.95 2015 UC (20), CD (18), C (18) SIFT/MS Differentiation of UC, CD and C 
based on six discriminatory VOCs 

Rieder et al.88 2016 UC (11), CD (24), non-IBD 
(6), IPAA (30), C (53) 

SIFT/MS Differentiation of IBD, non-IBD, 
IPAA, and C. Not between UC and 
CD 

Smolinska et al.96 2017 UC (72), non-UC (22) GC/MS Differentiation of active UC, 
quiescent UC, and non-UC based on 
11 VOCs 

Dryahina et al.92 2017 UC (51), CD (136), C (14) SIFT/MS Increased levels pentane, acetate, 
propanoate, butanoate and hydrogen 
sulphide in CD 

Smolinska et al.87 2018 CD (68) GC/MS Differentiation of active CD and 
quiescent CD and correlation of 
VOCs and the microbiome 

Tiele et al.93 2019 UC (16), CD (14), C (9) GC/IMS Differentiation of IBD and C based 
on butanoate and ethanoate 

Table V. Metabonomics studies based on breath samples from patients with inflammatory 
bowel disease 
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