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SUMMARY	
 

This doctoral dissertation is based on nine scientific 
papers published in the period 2007-2018. The overall 
aim of the present research has been to contribute to 
the discovery and characterisation of genetic variation 
contributing to the risk of type 2 diabetes (T2D) and 
related metabolic traits. 

T2D is a disease with involvement of processes in 
multiple tissues and organs. Prominent characteristics 
are obesity, insulin resistance and insufficient insulin 
secretion. Risk factors for development of T2D involve 
both lifestyle factors and a genetic predisposition. 
Research within the past decade has elucidated a large 
number of genomic loci associated with T2D and 
obesity primarily found through investigations of the 
European population through genome-wide 
association studies. These genetic variants are 
generally common in the population and individually 
inflict modest increases in risk of disease. Evidence 
points to a large number of risk variants below genome-
wide statistical significance having an impact on 
disease risk, together contributing to the high degree of 
genetic heterogeneity of T2D, obesity and complex 
traits in general.  

The nine papers included in the doctoral dissertation 
fall into three overall categories. Papers 1-4 had the 
overall common aim to investigate the more detailed 
physiological impact of genetic variation associated 
with T2D or glycaemia. These papers showed that a 
number of genetic variants associated with T2D and 
glycaemia have an intermediary effect on the ability of 
the pancreas to secrete an appropriate amount of 
insulin, a fact which at that point in time was a new 
realisation. These studies teach important lessons on 
the biology and pathophysiology of T2D and serve as a 
starting point for more detailed mechanistic 
investigations into specific disease-associated genetic 
loci. 

Papers 5 and 6 had the common aim to apply large-scale 
nucleotide sequencing to discover genetic risk elements 
for metabolic traits under the hypothesis that rare and 
low-frequency protein-coding genetic variation has an 
impact on these phenotypes. In Paper 5, a large-scale 
exome sequencing study in T2D was performed, which 
through three stages of discovery and replication 
analyses detected three loci associated with one or 
more of 12 selected metabolic traits. The sequencing 

study was performed at a stage where large-scale 
sequencing was unproven, which influenced the 
conclusions of the study in terms of the effect of rare 
variants on disease risk. As such, the study serves as a 
forerunner for later studies on an even larger scale. In 
paper 6, the data generated in paper 5 were used in 
combination with data from DeCode Genetics to 
elucidate genetic factors behind the variation in 
circulating concentrations of vitamin B12 and folate. 
Here a number of loci were associated with variation in 
these vitamins in the general population highlighting 
that the identified genetic factors lie within proteins 
with a known role in vitamin B12 and folate metabolism.   

Papers 7-9 aimed to investigate the impact of genetic 
variation on T2D and obesity in a small and isolated 
population. The small and historically isolated 
population of Greenland displays specific genomic 
characteristics, which make this population an 
alternative to the much-studied European population in 
the search for genetic risk factors for metabolic disease. 
In paper 7, we identified a common nonsense variant in 
TBC1D4 with a high recessive impact on 
hyperglycaemia, hyperinsulinemia and T2D caused by 
post-prandial insulin resistance. Two further loci 
associated with T2D under a recessive genetic model 
were identified in paper 8. In paper 9, we zoomed in on 
putative loss-of-function variation and identified a low-
frequency splice variant in ADCY3, which displayed a 
high impact on adiposity and prevalence of T2D. 
Together with accompanying papers, these findings 
point to novel obesity-related biology. In general, 
papers 7-9 have revealed aspects of the genetic 
architecture of T2D and obesity in the Greenlandic Inuit 
population and displayed important biological and 
clinical subtypes of these diseases. Thereby these 
studies have shown the potentials of investigating the 
genetic contribution to metabolic traits in isolated 
populations. 

Genetic studies of Europeans and other populations 
have shed light on the genetic architecture of T2D, 
obesity and other metabolic diseases and have shown 
differences between populations. These findings have 
huge implications for the possibility of applying genetic 
information in precision medicine of metabolic 
diseases. Further expansion of the mechanistic insights 
is leading to translation of association signals into 
clinical useful knowledge, especially in development of 
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novel drugs, but this process has proven difficult and 
tedious. In the future, studies of mega-size cohorts and 
biobanks with deeply phenotyped samples coupled to 
clinical information will probably disentangle more 
clinically relevant omics-related knowledge with an 
impact on future precision medicine in metabolic 
disease. Furthermore, an increased focus on 
translational and mechanistic research to make sense of 

the hundreds of loci associated T2D and obesity will 
inevitably reveal biological knowledge of huge 
importance for disease understanding and future drug 
development. 
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BACKGROUND	AND	AIMS	
 

Introduction	
The last decade has brought enormous advances in the 
understanding of the genetic influence on complex 
disease. Genomic discoveries in type 2 diabetes (T2D), 
once called “the geneticist’s nightmare”, and related 
traits have been tremendous leading to hundreds of 
genomic loci firmly associated with risk of disease or 
inter-individual variation in metabolic phenotypes. 
However, these discoveries have also made it evident 
that the genetic architectures of complex metabolic 
traits are highly complex with a huge level of genetic 
heterogeneity. There has been a growing sense that 
genomic technologies and discoveries will 
revolutionise the practice of clinical medicine and bring 
about a paradigm shift in the way we handle health care 
for the individual in the modern society. Specifically, it 
has been anticipated that these advances will 
eventually lead to a new model of health care focussed 
on disease prevention and on disease treatments that 
are tailored to smaller subsets of patients – so-called 
precision medicine.  

 

Type	2	diabetes	–	a	common	disease	with	a	
complex	aetiology	
The prevalence of obesity and T2D are increasing 
dramatically on a global scale. About 10% of the global 
population already has T2D or is likely to develop it, and 
~40% of adults are overweight or obese. In 2013, the 
International Diabetes Federation estimated that 382 
million adults aged 20–70 years worldwide had T2D, 
with 80% of those affected living in low- and middle-
income countries. This number is expected to rise to 
592 million by 2035 [10]. China and India are areas 
particularly affected by T2D, where the prevalence of 
T2D has increased dramatically despite the relatively 
low prevalence of obesity [11].  

T2D is a disease with a complex pathophysiology 
including multiple different organs and processes. T2D 
is associated with major disturbances in several 
physiological responses: insulin secretion from 
pancreatic beta cell is impaired, fasting plasma 
glucagon secretion from pancreatic alpha cells is 
increased and does not suppress normally after a meal, 
basal hepatic glucose production is increased, muscle 

and adipose tissue glucose uptake is impaired, fasting 
plasma fatty acid levels are increased and there is 
resistance to the stimulatory effect of incretion 
hormones, glucagon-like peptide 1 (GLP1) and gastric 
inhibitory polypeptide, on insulin secretion. Further 
pathophysiological characteristics of T2D are related to 
increased renal glucose absorption, changes in the 
response of the brain to hormones such as insulin and 
GLP1 combined with adipose tissue inflammation and 
systemic low-grade inflammation [12, 13]. 
Hyperglycaemia, determined from plasma glucose or 
HbA1C, defines the diagnosis of diabetes and is generally 
seen as a consequence of a complex interplay between 
insulin sensitivity and insulin secretion, with a failure of 
pancreatic beta cells to compensate appropriately for 
the increased insulin requirement induced by insulin 
resistance [14]. Whether insulin resistance or 
insufficient insulin secretion represent the primary 
defect in the pathogenesis of T2D has been a matter of 
debate [15, 16]. Since glucose tolerance is achieved by 
the combination of an appropriate insulin secretion and 
sufficient insulin action, increases in glycaemia can 
present when one component decreases and there is no 
concomitant improvement in the other, illustrating the 
fact that in a healthy individual any decrease in insulin 
sensitivity is compensated by an increase in insulin 
secretion [17-19] (Fig. 1). The fact that many 
individuals who are obese and insulin resistant never 
develop T2D shows the need for a beta cell defect for 
overt hyperglycaemia to manifest. Thus, both 
derangements are necessary, but not sufficient to reach 
the levels of hyperglycaemia that yield a clinical 
diagnosis. 

Lifestyle and environmental factors are crucially 
important for the development of obesity and T2D. 
Important risk factors for obesity are physical 
inactivity, excessive energy intake, depression, sleep 
disorders and low socio-economic status while major 
risk factors for T2D include obesity, especially a visceral 
fat deposition, physical inactivity, smoking, male sex, 
high age, sleep deprivation, urbanization, low-socio-
economic status and ethnicity [20-23].  
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Multiple lines of evidence support the view that genetic 
component plays an important role in the pathogenesis 
of T2D and the major T2D risk factor, obesity. Evidence 
for the genetic importance for the development of T2D 
comes from studies showing familial aggregation [26] 
and from twin studies [27-29]. In general, 35-50% of 
the risk of T2D is estimated to come from genetic 
factors. Also, for T2D-related quantitative phenotypes, 
a substantial part of the inter-individual variation is 
influenced by genetic factors. This is the case for both 
insulin secretion and insulin sensitivity [30-32] and for 
body mass index (BMI), for which 50-70% of the 
variation is estimated to be driven by genetic 
determinants [33-35]. 

	

Aims	and	hypotheses	
The overall aim of the present research has been to 
contribute to the discovery and characterization of 
genetic variation contributing to the risk of T2D and 
related metabolic traits. The doctoral dissertation is 
based on nine original papers, which fall in three overall 
categories. Papers 1-4 had the overall common aim to 
investigate the more detailed physiological impact of 
genetic variation associated with T2D or glycaemia. 
These studies teach important lessons on the biology 
and pathophysiology of T2D. Papers 5-6 had the 
common aim to apply large-scale nucleotide sequencing 
to discover genetic risk elements for metabolic traits 
under the hypothesis that rare and low-frequency 
coding variation has an impact on metabolic traits. 
Papers 7-9 aimed to investigate the impact of genetic 
variation on T2D and obesity in a small and isolated 
population showing aspects of the genetic architecture 
of T2D and obesity in Greenlandic Inuit and displaying 
important biological and clinical subtypes of these 
diseases. 

In the following, I will review the status of genetic 
research in T2D and obesity in light of the 
developments during the past decade in relation to the 
nine papers. The review falls into five parts and the 
topics which will be covered include 1) the current 
knowledge of T2D genetic risk factors in the European 
population, 2) a discussion of the physiological impact 
of T2D-associated genetic variants, 3) the influence of 
sequencing-based studies on current knowledge of 
genetic landscape of T2D and related traits, 4) the 
genetics of T2D in isolated populations and finally 5) an 
overall recapitulation of the past decade of genetic 
research on the major research objectives of this 
research including a discussion of the future 
perspectives of this research. 

 

 	

 
Figure	1.	Illustration	of	the	relationship	between	insulin	
sensitivity	and	 insulin	response	based	on	data	 from	an	
oral	 glucose	 tolerance	 test	 in	 5331	 individuals	 of	 the	
Inter99	 cohort.	 Insulin sensitivity was estimated by the 
Matsuda insulin sensitivity index [24] and glucose-stimulated 
insulin response by the corrected insulin response [25]. 
Diabetes status is indicated as normal glucose tolerance 
(NGT), impaired fasting glycaemia (IFG), impaired glucose 
tolerance (IGT) or type 2 diabetes (T2D). 



- 11 - 

PART	 1.	 GENETIC	 IMPACT	 ON	 TYPE	 2	 DIABETES	 AND	 RELATED	 TRAITS	 IN	 THE	 EUROPEAN	
POPULATION	
 

Opening	the	human	genome	
In 2001, the initial sequencing and analysis of the 
human genome was published in the Nature journal as 
a huge paper based on the collective work of the Human 
Genome Project [36] with a companion paper reporting 
a map of more than 1 million genetic variants [37]. 
Furthermore, a parallel private sequencing initiative 
was also published [38]. These projects and papers 
formed the basis of a revolution in the study of 
genomics and of the genetic impact on human diseases 
and phenotypes. It was the expectation that the 
completion of the Human Genome Project would mark 
the beginning of a new era of genomic medicine, in 
which new approaches to discovery research, disease 
prediction and treatment would develop from an 
improved understanding of the genetic risk factors of 
human disease. However, the journey towards these 
ultimate goals has been longer and filled with more 
obstacles than initially expected [39]. The translation 
from simple nucleotide sequence and sequence 
variation, via the complex time- and cell-dependent 
transcriptome and proteome to biological and clinical 
disease breakthroughs is enormously complex. 

 

Studying	the	genomic	impact	on	risk	of	type	
2	diabetes	and	metabolic	traits	
Over the years, different approaches have been taken to 
the search for genetic determinants of T2D and other 
complex diseases. The technological advances in 
laboratory and in computer methods have largely 
directed the development in this research field, while 
also other factors such as lessons learned from early 
approaches have formed the basis for the status of this 
research field. Before the existence of genome-wide 
association studies (GWAS), the investigation of genetic 
determinants of the polygenic inheritance of common 
metabolic diseases and phenotypes was primarily done 
by the candidate gene approach or by genetic mapping 
by linkage analysis. These two early approaches were 
largely unsuccessful in identifying the genetic 
determinants of T2D. The linkage analysis approach 
seeks evidence of co-segregation between genomic 
markers and as such screens the entire genome for 

genomic susceptibility regions using a limited number 
of highly polymorphic microsatelitte markers [40]. This 
approach was rather successful in detecting genes 
involved in monogenic Mendelian diseases but had low 
statistical power in complex diseases dominated by low 
penetrance of risk alleles [41]. Yet, the T2D 
susceptibility locus, TCF7L2 was discovered by typing 
of microsatellite markers in a region previously 
identified by linkage [42, 43]. The association between 
the TCF7L2 locus and T2D has since been widely 
replicated and it remains the strongest common risk 
locus in the European population with an odds ratio 
(OR) of 1.4 per allele [44-47]. 	

In contrast to the linkage approach, the candidate gene 
approach is not agnostic but relies on an a	 priori 
hypothesis that a certain genetic variant, gene or 
genomic region is involved in disease pathogenesis. 
Overall, the candidate gene approach has not been 
successful in finding validated associations between 
genetic variants and T2D or related traits; however, a 
few positive examples exist. For T2D, two loci have been 
found based on this method. Association between the 
p.Pro12Ala variant in the PPARG locus and T2D was 
demonstrated and has subsequently been replicated in 
large-scale GWAS [46, 48-50]. PPARG was initially 
investigated as a candidate gene substantiated by being 
the receptor of the thiazolidinediones class of 
antidiabetic medicine. Furthermore, the common 
p.Glu23Lys variant in KCNJ11 has been shown to 
increase risk of T2D in association studies [51, 52] and 
replicated in GWAS [53]. As anticipated from the 
function of the gene product, this variant influence 
insulin secretion from the pancreatic beta cell [51, 52]. 
Despite such examples, the number of negative or false 
positive studies are vast and for a number of years they 
have contaminated the scientific literature. Several 
reasons for the general failure of this approach exist 
and while some are related to the method itself, others 
are more a reflection of the era of genetic research in 
which this approach was widely used, i.e. limitations of 
genetic association studies in the early phases of 
molecular genetic epidemiology. First, a major 
limitation of the candidate gene approach is the 
fundamental need to have a detailed knowledge of the 
disease of interest to be able to select a reasonable 
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candidate gene. Second, at the time in which most 
candidate gene studies were performed, the rather low 
sample sizes applied in genetic association studies 
meant that these studies were vastly statistically 
underpowered to detect associations of the effect sizes 
we now know that common variants infer. While some 
of this can be overcome by applying meta-analysis, as 
illustrated by the study of the PPARG p.Pro12Ala variant 
[49], other biases, such as publication bias, may 
influence the outcome of literature-based meta-
analysis. Third, the genomic coverage of especially early 
candidate studies was inadequate and mostly gene-
centric; while evidence from GWAS shows that, the 
majority of associated variants are found in non-coding 
genomic content [47]. Forth, insufficient correction for 
multiple testing was a major problem, which has 
contributed to false positive and non-replicated 
findings. Fifth, genetic association studies performed in 
a case-control design including only a single or few 
variants cannot be corrected for population 
stratification or other sources of inflation increasing the 
risk of false positive conclusions. Contrary, this is 
adequately corrected for in GWAS design [54, 55]. The 
research field investigating T2D genetics needed a 
change. 

The	era	of	genome-wide	association	studies	
With the development of array-based genotyping 
technology, thousands of genetic variants could be 
genotyped in a single experiment leading to the design 
of GWAS. The design and pursuit of GWAS rely on the 
“common disease – common variant” hypothesis which 
states that the genetic variation responsible for most of 
the disease risk in the population are shared across 

members of the population [56-58]. The powerfulness 
of the design of GWAS relies on resolution of many of 
the shortcomings described above for the candidate 
gene approach. As such, GWAS is an agnostic approach 
in the sense that no prior hypothesis is put forward for 
any specific variant or gene. Furthermore, a genome-
wide significance level of 5×10-8 has been adopted to 
account for the high multiple testing burden [59] and 
together with the possibility to correct for population 
stratification this has minimized spurious findings. 
Meanwhile, sample sizes of genetic association studies 
have increased to obtain statistical power to draw firm 
conclusions, because of establishment of large human 
cohorts, falling prizes of array-based genotyping and 
due to increasing willingness to collaborate 
internationally in large-scale meta-analyses (Fig. 2).  

Genomic coverage of GWAS has increased over the 
years due to more dense genotyping arrays and since 
studies have started applying genotype imputation. 
Large-scale sequencing efforts have been essential for 
this development, since genotyping as such can only 
measure already known variation. In genotype 
imputation, non-genotyped genetic variation is inferred 
from reference panels such as HapMap [60], 1000 
Genomes Project [61], UK10K [62] or most recently the 
Haplotype Reference Consortium (HRC), which 
includes whole-genome sequence data from more than 
30,000 individuals establishing an unprecedented 
depth in genome sequence variation data [63].  

 

 

 

 

Figure	2.	 Illustration	of	 the	number	
of	 GWAS	 publications	 stratified	 on	
sample	 size	 during	 the	 years	 2008-
2016.	 Source: GWAS catalogue at 
https://www.ebi.ac.uk/gwas/. 
Modified from ref. [64] with permission. 
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Increasingly large and dense sequencing-based 
reference panels and improvement in statistical 
methods for inference have led to increasing coverage 
of variation leading to a situation in which a modern 
GWAS evaluates in the order of 10-30 million genetic 
variants with minor allele frequency down to 0.5% or 
maybe even 0.1% [63] (Fig. 3). For even rarer variants, 
genotype imputation is still inaccurate and does not 
provide sufficient coverage [63], and in this frequency 
space, sequencing is the method of choice. 

 

Figure	3.	Imputation	quality	measured	as	R2	dependent	
on	minor	allele	frequency	for	different	reference	panels.	
Modified from ref. [63] with permission. 

 

With the advent of large common resources such as the 
UK Biobank, which holds ~500,000 participants with 
rich phenotype data and genome-wide genotyping [65, 
66], modern GWAS are reaching what would previously 
have been seen as an extreme sample size approaching 
1 million individuals [47, 67, 68]. As described below, 
this combination of increased sample size and genomic 
coverage is currently leading to a new wave of studies 
and discoveries of specific genetic risk variants, which 
leads to a description of the genetic architecture of 
complex diseases at unprecedented levels of detail and 
to large-scale evaluation of the genetic relationship 
between different diseases and traits.  

By convention, loci are named for the gene closest to the 
lead single-nucleotide polymorphism (SNP), which is 
not to say that the gene in question is necessarily the 
functional gene through which the disease mechanism 
is working. Similarly, the identified most strongly 
associated variant at a locus, often referred to as the 
lead variant, is not necessarily the causal variant, but 
may merely be correlated to a measured or 

unmeasured functional variant. For the majority of 
disease-associated loci, the causative variant and gene 
are unknown. 

 

GWAS	discoveries	 of	 the	 genetics	 of	 type	 2	
diabetes,	obesity	and	metabolic	traits	
During the first years, GWAS was characterised by 
relatively low sample size in the discovery data 
investigating a relatively low number of genetic 
variants. For instance, the first published GWAS of T2D 
was performed in ~1400 cases and controls with 
information on ~400,000 variants, yet was 
nevertheless able to detect novel loci genuinely 
associated with T2D [69]. Besides replicating the 
previously identified TCF7L2 locus [43], the study 
identified risk variants in HHEX and SLC30A8 loci [69]. 
This study was quickly followed by a number of other 
studies [70-74]. The first GWAS based on genotype 
imputation and meta-analysis of several studies was 
published in 2008 being a landmark paper as the first 
step in future developments over the next decade [50]. 
Here six novel loci were identified, among others JAZF1 
[50] and since a number of GWAS of T2D have been 
reported finding an increasing number of associations 
bringing the number of association signals above 400 
[47, 50, 53, 69, 73, 75]. This is in striking contrast to the 
three loci (PPARG, KCNJ11 and TCF7L2), which were 
found prior to the introduction of GWAS and it must be 
seen as a great methodological success.  

Most findings for T2D have been performed within the 
Diabetes Genetics Replication and Meta-analysis 
Consortium, which has published a number of papers 
including an increasing number of individuals and an 
increasing genomic coverage [50, 53, 75]. The most 
recent and largest GWAS thus far for T2D was published 
in 2018 [47]. The data included here were from 
~900,000 individuals with genotype data imputed to 
the HRC panel testing ~27 million variants, hence being 
the most thorough search for T2D risk variants thus far, 
representing a ~45,000-fold increase in number of 
individual genotypes over the first GWAS from 2007. In 
the paper, 243 loci, including 403 distinct signals, 
associated with T2D were reported (Fig. 4) and this 
seminal paper can be used to describe the genetic 
landscape in the European population. These T2D risk 
variants are predominantly common with minor allele 
frequency >5% (323 of 403 distinct variants), which 
impose rather low risk increments with odds ratios up 
to 1.37 per allele. Furthermore, a number of low-
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frequency and rare variants were identified as 
contributors to genetic risk T2D. The topic of low-
frequency and rare variants in common diseases as T2D 
will be discussed in more detail in Part 3.  Another 
characteristic of the identified loci is that at many loci, 
more than one distinct association signal exists. At 151 
loci, a single signal was identified while two 
independent signals were identified at 57 loci and the 
remaining 35 loci contained three or more distinct 
signals (Fig. 4). This implies that genomic hotspot genes 
carry a number of T2D risk variants and may point to 
these loci and genes being biologically more important 
in T2D pathogenesis. Furthermore, since a number of 
the secondary signals at these loci are represented by 
low-frequency or rare variants, these loci also form a 
bridge between common variants with low impact via 
low-frequency or rare variants with intermediary 
effects to monogenic diabetes-causing variants 
imposing high penetrance in affected families. For 
instance, this is observed for the HNF1A	 locus, which 
will be discussed in more detail in Part 5. Finding such 
key genes related to several types of diabetes are of 
great importance, since it directly implicates the 
specific gene in the disease pathogenesis. 

Another interesting effort undertaken in many modern 
GWAS is to use statistical methods to try to determine 
which variant in a given locus may be the causal variant. 
This is of great interest both for understanding the 
genetic architecture and for further studies into 
biological mechanisms from association to an impact on 
disease risk. In the most recent T2D GWAS [47], 
statistical fine-mapping efforts demonstrated a 
posterior probability >80% for the lead variant at 51 
loci and at 18 loci the probability for the lead variant 
being causal was >99% and the credible set of putative 
causal variants contained just the lead variant. 
Similarly, for approximately half of the 403 distinct 
association signals, the genetic credible sets of variants 
include less than 51 variants. Although this is a major 
improvement over previous fine-mapping efforts [76], 
the majority of loci are still without a clear causal 

candidate variant. Hence, a lot of research is still needed 
to discover causal genes and mechanisms in the 
associated loci. While the number of genomic loci and 
variants associated with T2D is substantial, together 
they explain around 17.4% of phenotypic variance – a 
number that has with the recent study increased 
substantially from earlier reports [53, 75, 76].  

One of the expectations to the achievements of 
elucidating the genetic determinants of diseases such as 
T2D were related to the possibility to use genetic 
information to predict future disease, which could 
enhance early screening for T2D and allow for targeted 
prevention. However, studies applying the early 
findings from GWAS to predict T2D were of limited 
success. For instance, Meigs et al. investigated 
prediction from 18 variants in 2377 participants of the 
Framingham Offspring Study and showed that the 
genotype score only provided a slightly better 
prediction of T2D than that of classical risk factors 
alone [77]. These findings are in line with other studies 
of the same question [78, 79]. It is expected that 
identification of more common variants with very low 
effect sizes would only increase predictive ability 
slightly. With novel methods applying genome-wide 
polygenic risk scores on densely imputed data sets, it is 
possible to evaluate the overall contribution of genome-
wide variation on disease under the assumption that 
heritability can be ascribed to a long tail of variants of 
individually very tiny effects. A polygenic risk score is 
most commonly calculated as a weighted sum of the 
number of risk alleles carried by an individual, where 
the risk alleles and their weights are defined by the loci 
and their estimated effects as detected by GWAS [80]. In 
the most recent GWAS of T2D, genetic prediction was 
tested for a polygenic risk score of more than 130,000 
variants. Here a maximum prediction with a C-statistic 
of 66% was found and individuals at the 2.5% upper 
extreme of this score had a 3.4-fold increased risk of 
T2D compared to the median and a 9.4-fold increased 
risk compared to the lower 2.5% of the score [47].  

 

 

Figure	4.	 Identification	and	
fine-mapping	 of	 genetic	
variants	 and	 loci	 in	 T2D. 
Number of distinct association 
signals in 243 loci associated 
with T2D in GWAS (top) and 
number of variants in genetic 
credible sets for 403 distinct 
signals (bottom). Modified 
from ref. [47].  
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These risk estimates translate to estimated absolute 
lifetime risks of T2D of 51% and 5.5% for these 
extremes, respectively, thus a very sizeable difference. 
Along the same lines, a recent paper investigated 
polygenic risk scores for several metabolic phenotypes 
and defined a polygenic risk score of 6.9 million 
variants with non-zero effects on T2D. This score 
defined 3.5% of the population being at 3-fold increased 
risk compared to the remaining population [81] (Fig. 5). 
Of interest, in the tails of the distribution of the 
polygenic risk score, the risk estimates deviated from 
the allelic additive effect. In essence, it seems as if 
applying polygenic risk scores may increase the 
predictive ability for T2D, which could be of clinical 
relevance especially in defining a smaller subset at 
particularly increased risk.  

 

Figure	5.	Polygenic	risk	score	in	relation	to	prevalence	
of	T2D	in	the	294,831	UK	Biobank	participants.	From ref. 
[81] with permission.	

 

These risk predictions can theoretically be made at an 
early time in life, yet it remains to be seen if risk 
estimates are of similar magnitude in such a setting. In 
addition, a more specific evaluation of the predictive 
potential of genome-wide polygenic risk scores 
compared to other clinical parameters must be 
performed and their preventive and therapeutic 
benefits remain unproven [82]. In addition, to put this 
into perspective, a prognostic marker with an OR of 3.0 
that correctly identifies 80% of persons who will 
develop T2D would incorrectly classify 60% of persons 
who will not develop T2D [83] and this degree of 

discrimination is by itself not clinically useful [84]. 
Comparable results have been found for cardiovascular 
disease (CVD) [81, 85] potentially opening for clinical 
genotyping to detect subsets a particularly high risk 
[86]. 

Besides GWAS of T2D, other sources of identification of 
loci of importance for T2D have been through studies of 
basic quantitative diabetes-related traits. These efforts 
have discovered more than 70 loci associated with 
quantitative traits reflecting glucose homeostasis, i.e. 
fasting glucose, fasting insulin, 2-hours glucose during 
an oral glucose tolerance test (OGTT) and HbA1C [87-
89]. Many of these loci do also associate with T2D, yet 
the overlap between loci for these traits is not extensive 
as illustrated in Figure 6 for the loci discovered until 
2014 (Fig. 6). These findings indicate that some gene 
variants may impose modifying effects on fasting 
glucose levels in the general population while others 
have specific thresholds at which the genetic effect sets 
in thereby inflicting risk of T2D without modifying 
levels of fasting glucose at the population level.  

For other complex metabolic traits, many aspects of the 
development have been very similar to that of T2D. 
Initial studies for of BMI and obesity picked up the 
variants with highest effect sizes such as the FTO [90] 
and MC4R [91] loci and the FTO variant remains the 
common variant with the highest impact on BMI [90, 
92]. Since then, a number of rounds of GWAS have 
enlightened the genetics of both BMI and body fat 
distribution, measured as waist-hip-ratio adjusted for 
BMI and identified a high number of associated obesity-
related loci [92-97]. The most recent GWAS combined 
the results from studies performed by the GIANT 
consortium for BMI [92] and body fat composition [95] 
with results of association analyses of participants of 
the UK Biobank ending at sample size of more than 
700,000 individuals. As is the case for T2D, these 
studies have provided unprecedented detail in the 
description of the genetic landscape of genetic 
disposition to obesity, while they have also revealed a 
number of statistical caveats of analysing such a large 
set of individuals for instance related to difficulties in 
separating the effect of subtle population substructure 
and the effect of a high degree of polygenicity [98]. For 
BMI, the novel analysis increased the number of 
associated variants to 716 consisting of 450 primary 
associations and 266 secondary associations [98].  
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Yet, this set of genome-wide statistically significant 
variants still explains a mere 5% of the variance of BMI, 
which is far from the expected genetic contribution of 
50-70% [33-35]. Applying a more liberal significance 
threshold included more variants into the associated 
set of variants and increased the explained variance in 
BMI to approximately 10% [98]. Yet, a previously 
published analysis of BMI estimated an explained 
proportion of variance from common (minor allele 
frequency (MAF) >1%) genome-wide variants of 27%. 
Considering the imperfect tagging of genotype 
imputation and the possible overestimation of 
heritability from twin- or family-based studies, this 
finding makes it likely that genome-wide genotype data 
may explain most of the genetic contribution to BMI 
[100]. For waist-hip-ratio adjusted for BMI, as an 
indicator of body fat distribution, 463 association 
signals were detected in 346 loci in almost 700,000 
individuals [68]. Despite the high number of variants 
associated with waist-hip ratio, these variants 
combined only explained ~4% of the variation in the 
trait. Fat distribution shows a strong sex-dimorphism in 
humans and genetic studies have shown that this is at 
least partly genetically determined. Of the 463 variants 
associated in the sex-combined dataset, 105 showed 
sex-dimorphism – 97 of which had a stronger effect in 
women [68]. Analyses of BMI and T2D have not shown 
similarly strong sex-dependent effects [92, 98]. Of high 

interest, studies have indicated that variance in BMI is 
generally genetically regulated by genes in the brain 
[92], while body fat distribution is generally attributed 
to genes expressed in the adipose tissue [95], however, 
the new studies do not shed further light on this aspect.  

Although T2D and obesity are highly interrelated from 
both epidemiological and pathophysiological 
viewpoints, the shared genetic aetiology imposed by 
hitherto identified common variants is limited. Figure 6 
shows the status as per 2014 and of the 90 loci 
associated with T2D and 56 loci associated with 
standard measures of adiposity, merely five loci are 
shared (FTO, MC4R, ADAMTS9, GRB14/COBLL1 and 
GIPR). While some data indicate that a major reason for 
this lack of genetic locus overlap may be lack of 
statistical power to identify the minute effects inflicted 
on T2D by BMI-associated variants [99], other 
approaches may shed light on this matter. The recent 
GWAS discovery analysis of T2D was performed with 
and without adjustment for BMI and for most loci there 
was only minimal difference in effect size estimates and 
significance of T2D-associated variants between these 
models (Fig. 7). However, at 41 of 403 distinct T2D 
association signals there were BMI-dependent 
associations – 26 variants showed attenuation of 
association after adjustment for BMI while 15 showed 
strengthening of the association after BMI adjustment 

Figure	6.	Overlap	between	
genomic	 loci	 associated	
with	T2D,	glycaemic	traits	
and	 obesity-related	 traits	
discovered	 until	 2014. 
From ref. [99]. 
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(Fig. 7) [47]. Among signals showing an adiposity-
mediated effect on T2D, were FTO, which was actually 
initially identified due to this feature [71, 90], and 
MC4R. On the other hand, among variants with stronger 
effects in BMI-adjusted analysis were some loci with 
effects on insulin secretion, for instance TCF7L2 and 
JAZF1 [2, 101]. These findings indicate that only a rather 
small subset of genetic effect on T2D is mediated 
through BMI and adiposity. Another line of analysis to 
clarify this issue is genetic correlation analysis, which 
uses the full set of genome-wide association results to 
estimate the shared genetic contribution between two 
traits using methods such as linkage disequilibrium 
(LD)-score regression [102] often accessed through the 
LD hub webpage [103]. In such analyses, genetic 
correlation between T2D and a number of cardio-
metabolic traits was seen including positive correlation 
with adiposity-related measures, fasting glucose, 
fasting insulin and fasting triglyceride [47]. The 
magnitude of these genetic correlations (rg) are in the 
order of 20-60% indicating a significant proportion of 
shared genetic predisposition to these traits when 
estimating this based on genome-wide variation [47, 
102, 103]. 

 
Figure	7.	The	effect	size	of	T2D-associated	variants	on	
T2D	with	or	without	adjustment	for	BMI. Variants with 
a higher T2D effect size in BMI-adjusted analysis are 
showed in red and variants with a higher T2D effect in BMI-
unadjusted analysis are shown in blue. Size of the circle is 
proportional to -log10 of the heterogeneity P-value. From 
ref. [47]. 
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PART	2.	THE	PHYSIOLOGICAL	IMPACT	OF	VARIANTS	ASSOCIATED	WITH	TYPE	2	DIABETES	AND	
GLYCAEMIA	
 

As described above, most T2D risk variants have been 
detected by the agnostic GWAS approach and therefore 
the knowledge of the underlying biological mechanism 
and physiological phenotype leading to T2D or altered 
glucose levels is for most loci initially very limited. 
Subsequent studies can then be performed with the 
objective to unravel the intermediary phenotype of 
these loci in order to obtain a more detailed biological 
knowledge, initially seeking to break the diabetes-
related phenotype for each locus into the major 
components of T2D pathogenesis. Genetic variants can 
influence risk of T2D by many different phenotypic 
alterations of which obesity, insulin resistance and 
decreased pancreatic beta cell function are the main 
elements. Elucidation of the intermediary mechanisms, 
initially in broad categories and if possible, pinpointing 
more distinct defects in human physiology, is important 
in order to understand the nature of disease mechanism 
but may also help to differentiate T2D in more 
homogenous subcategories with specific primary 
defects. This may influence both the specific treatment 
of the individual patient and potentially facilitate 
preventive initiatives based on genetic subgrouping of 
patients with T2D. In addition, these investigations will 
open for biological functional studies of the identified 
loci. Papers 1-4 of this dissertation are all studies of the 
endophenotypes of genetic variants found in GWAS of 
T2D or fasting glycaemia. 

 

Insulin	 secretion	deficiency	 as	 the	primary	
genetic	defect	in	type	2	diabetes	
The project presented in paper 1 took its starting point 
in T2D risk variants found in the very first round of 
GWAS analysis, which were published in the spring and 
summer of 2007 [69-73]. The project investigated four 
of the variants initially associated with T2D in relation 
to T2D, insulin resistance and insulin secretion. For 
three loci (HHEX, CDKN2A/B and IGF2BP2), we 
replicated the impact on T2D with allelic OR of 1.10-
1.30 per allele, which at this early stage of GWAS was an 
important proof for the validity of this novel approach. 
Of interest, for the variants in HHEX and CDKN2A/B loci 
we found associations with serum insulin levels at 30 
minutes during an OGTT and with the insulinogenic 

index and BIGTT-acute insulin response (AIR) indices 
of insulin secretion in ~5,700 non-diabetic individuals 
of the Inter99 cohort. These findings indicate that these 
variants primarily increase risk of T2D due to a 
decreased ability of carriers to secrete the sufficient 
amounts of insulin in response to increases in plasma 
glucose concentrations. This was among the first 
reports to show that the GWAS-identified T2D risk 
variants primarily affect insulin secretion and was in 
agreement with other studies published at that time 
[104-107]. This general observation of the 
physiological effect of T2D risk variants was further 
substantiated in the second paper of the dissertation 
[2], which was published in 2008. In this study, we 
investigated the impact of six novel T2D loci identified 
in the first large-scale GWAS meta-analysis for T2D [50] 
on diabetes-related intermediary phenotypes in the 
Danish population. Here we found associations with 
indices of insulin secretion for index variants at three 
T2D loci in JAZF1, CDC123 and TSPAN8, suggesting an 
impaired pancreatic beta cell function in risk allele 
carriers. Yet, the effect sizes were of a smaller scale than 
for the initially reported loci [1] and of borderline 
statistical significance. Along the same lines, papers 3 
and 4 report the diabetes-related intermediary 
phenotypes for index variants associated with T2D or 
fasting glucose concentrations discovered through 
GWAS. Paper 3 deals with a number of variants shown 
to associate with fasting glucose in a GWAS of fasting 
glucose and fasting insulin [3]. Paper 4 presents the 
replication analysis of variants found to be associated 
with T2D in a Japanese study and here we find a strong 
and highly significant effect of the VPS13C rs7172435 
variant on glucose-stimulated insulin secretion (GSIS) 
in individuals from the general Danish population [4].  

While these findings were published in separate papers 
subsequent to the primary identification of the 
associated loci, a more general appreciation of the 
impact of T2D risk alleles on the two major 
intermediary phenotypes, insulin secretion and insulin 
sensitivity can be found by illustrating the effect of all 
T2D-associated variants on these traits. In 2010, we 
published a summary of the effect of the first 36 
variants associated with T2D in relation to glucose-
stimulated insulin release and insulin sensitivity in the 
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Danish Inter99 population [101], showing that the 
majority of T2D risk alleles have their major effect on 
GSIS. An updated analysis of 355 of the 403 distinct 
European T2D risk variants which were published 
recently [47] is shown in Figure 8. The figure shows the 
effect of the T2D predisposing allele on the Matsuda 
insulin sensitivity index [24] and the corrected insulin 
response (CIR) [25] based on analyses of 7671 non-
diabetic individuals from the Danish population (Fig. 8). 
This analysis confirms the pattern observed in the 
earlier reports showing that many more T2D risk alleles 
are associated with decreased glucose-stimulated 
insulin secretion than there are alleles associated with 
decreased insulin sensitivity. In this analysis, 21 
variants are associated with decreased GSIS at P<0.001, 
yet this sample size is insufficient to detect minor 
effects. However, there are some notable exceptions 
from this general pattern, since some insulin resistance 
variants have been identified. Among those loci are 
PPARG, IRS1, GCKR and ADAMTS9 [49, 108, 109].  

The published studies of some of the first GWAS-
identified variants associated with T2D or fasting 
glucose together with updated analysis of all T2D 
variants shown in Figure 8, have taught us that a 
substantial part of the inherent genetically induced 
susceptibility for T2D relates to the extent to which 
pancreatic beta cell function can be maintained [101, 
110]. This opposes the longstanding viewpoint that the 
majority of T2D genes would inflict a state of insulin 

resistance with the beta cell simply failing to respond to 
the lifelong state of increased insulin secretion demand 
[14]. Given that the T2D risk variants have been 
detected by the agnostic GWAS approach, the 
knowledge of the underlying phenotype predisposing 
to T2D is largely unbiased from biological hypotheses. 
Nevertheless, it is possible that T2D risk variants with 
impact on the beta cell generally have higher effect 
sizes, possibly due to less interaction with 
environmental factors, leading to increased statistical 
power to detect the beta cell variants both in the GWAS 
discovery phase and in the physiological follow-up 
studies. However, it is also likely that it is a genuine 
overall feature of the genetic predisposition to common 
T2D.  

Of 355 distinct T2D variants investigated, 332 do not 
associate (at P<0.001) with either insulin sensitivity of 
insulin secretion in the analysis of 7671 individuals 
presented in Figure 8, which indicates that this analysis 
is not sufficient to capture the primary physiological 
impact of all T2D risk alleles. Reasons for this may be 
many including low statistical power in physiological 
follow-up studies compared to GWAS discovery studies, 
inability of the OGTT-based indices to capture the 
physiological impact of specific variants or that they 
work through other intermediary phenotypes. 
Comparisons of the effect on T2D and the effect on 
insulin secretion and sensitivity display that there is 
some correlation between these effect sizes (Fig. 9).  

Figure	8.	The	effect	of	T2D-associated	alleles	
on	 insulin	 sensitivity	 and	 insulin	 secretion.	
355 T2D-associated variants [47] with MAF >2% 
were included. Insulin secretion and sensitivity 
were estimated from an OGTT by the corrected 
insulin response [25] and the Matsuda insulin 
sensitivity index [24], respectively. All effects are 
for the T2D-risk increasing allele. Analyses were 
performed in 7671 non-diabetic individuals from 
the Inter99, Health2008, 1936 Birth Cohort and 
ADDITION-Pro cohorts. Red and blue colours are 
shown for variants with P<0.001 for insulin 
secretion and insulin sensitivity, respectively. 
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This finding indicates that low statistical power may be 
the reason for the apparent lack of effect on 
intermediary phenotypes, since variants with a small 
impact on T2D are then expected to also have a small 
effect on intermediary phenotypes. Yet, other variants 
show a relatively high impact on T2D but no effect at all 
on insulin secretion or insulin sensitivity, implying that 
other intermediary mechanisms are at play in the 
connection between the genetic variant and risk of T2D. 
Although being at the centre of T2D pathogenesis, 
changes in insulin-related biology is only one of the 
possible intermediary mechanisms. As such, other 
processes related to adipose tissue biology, liver 
function, brain function or other biological pathway 
might be crucial for specific T2D risk variants [13, 111, 
112]. 

The search for the physiological effects of genetic 
variants related to T2D and glycaemic traits has several 
limitations. The data used in these studies are a 
compromise between obtaining a large sample size and 
getting depth in the characterisation of the phenotype. 
Most data applied in papers 1-4 were obtained from an 
OGTT, based on which estimates of insulin action and 
GSIS were constructed. These estimates are 
constructed based on correlation with or modelling of 
more detailed physiological measures, such as 
intravenous glucose tolerance test (IVGTT) or 
hyperglycaemic clamp for insulin secretion and the 

hyperinsulinemic-euglycaemic clamp for insulin 
sensitivity [24, 113, 114]. In OGTT-based 
investigations, it is possible to achieve a relatively high 
sample size and retain a high similarity with the 
intended physiological parameter. Even higher sample 
sizes are possible if estimates of insulin response and 
action are based on fasting values instead of OGTT data.  

Depending of the number of individuals studied, the 
correlations between different insulin secretion 
estimates from the OGTT and golden-standard clamp or 
IVGTT tests are in the range 0.5-0.8 [115, 116] showing 
that a great deal of the variation in the gold-standard 
index is not explained by the OGTT indices. Still, when 
applying OGTT-based estimates to evaluate the impact 
of genetic variation it is currently not possible to obtain 
sufficient statistical power to detect the minute effects 
probably inflicted by many of the T2D-associated 
variants. This lack of statistical power is for instance 
indicated by the fact that most proven variants with an 
impact on beta cell function were among the first 
identified by GWAS – the low hanging fruits – because 
of their relatively high effect on T2D and intermediary 
traits. The simplest indices are solely based on fasting 
concentrations of glucose and insulin and hence it is 
possible to obtain a higher sample size in cohorts 
applying such measures.  

 

a	 b	

  

Figure	9.	Relationship	between	the	effect	of	T2D	risk	alleles	on	T2D	and	on	estimates	of	a)	insulin	sensitivity	and	b)	
insulin	secretion.	All effects are shown for the T2D-risk increasing allele. Effects on insulin secretion and insulin sensitivity were 
calculated as described in Figure 8. T2D effect sizes are in OR and were obtained from ref. [47].	
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However, while the homeostasis model assessment 
(HOMA) of insulin resistance  index is a rather good 
surrogate for hepatic insulin resistance [117], HOMA-B 
is not a very accurate or useful tool for estimating 
insulin response or beta cell function.  

This limitation in statistical power of OGTT-based 
indices is also reflected in the rather limited success in 
using more refined measures of insulin secretion or 
insulin sensitivity in discovery analyses of genetic 
contributions to these phenotypes in the general 
population. Such studies aim at defining the genetic 
determinants of insulin biology. For insulin sensitivity, 
a GWAS applying the Stumvoll insulin sensitivity index 
[118, 119] found two loci, BCL2 and FAM19A2, 
associated with variation in insulin sensitivity in 
individuals without diabetes [120]. This GWAS included 
16,753 individuals in the discovery phase with 
replication studies in up to 13,354 individuals. 
Similarly, a GWAS of direct measures of insulin 
sensitivity, such as euglycemic clamp or insulin 
suppression test, in up to 5500 individuals without 
diabetes discovered a missense variant in NAT2 with an 
impact on insulin sensitivity [121]. NAT2 potentially 
causes insulin resistance via NAT1-dependent 
mitochondrial dysfunction associated with increased 
ectopic lipid deposition [122, 123]. In 2009, a GWAS of 
GSIS was published finding a single novel associated 
variant at the GRB10 locus after discovery analysis of 
10,831 individuals [124]. Knock-down of GRB10 in 
human pancreatic islet showed reduced insulin and 
glucagon secretion pointing to a potential but complex 
mechanism [124]. In addition, a GWAS of the insulin 
response to an IVGTT in 5567 individuals has recently 
been published [125]. The report evaluated genetic 
contributions to both peak insulin levels during an 
IVGTT and insulin secretion rate estimated from serum 
C-peptide measurements, the latter providing an 
estimate of the rate of insulin secretion independent of 
hepatic insulin clearance. While this study did not 
detect novel associations with GSIS, the data confirmed 
that decreased insulin secretion is a key mechanism for 
many T2D-associated loci. In addition, the study was 
able to compare the effect of T2D-associated variants 
on estimates of GSIS coming from IVGTT with that of 
GSIS during an OGTT. Such a comparison can point to 
possible effects on the incretin system if variants show 
a dissociative impact on GSIS after oral and intravenous 
stimuli, yet only serves as an indicator of such effects. 
For instance, the common variant inflicting the highest 
T2D risk in the European population at TCF7L2 has 
been shown to cause incretin resistance [126-130]. 

Nevertheless, this was not immediately evident from 
these results, although the effect on peak insulin levels 
during IVGTT seemed to be lower than expected 
compared to the effect size on T2D [125]. The rather 
meagre findings of novel loci associated with insulin 
biology and T2D coming from these studies are most 
likely the consequence of the relatively low sample size 
and hence statistical power in studies of estimates of 
insulin sensitivity and insulin response.   

 

Applying	 diverse	 OGTT-based	 estimates	 of	
beta	 cell	 function	 to	 refine	 physiological	
knowledge	
As described, several different estimates of insulin 
secretion and insulin sensitivity exist and to a large 
extent the applied method is a trade of between detail 
and accuracy of the method and feasibility. For many 
purposes, the OGTT provides a reasonable compromise 
between these conflicting interests. Applying an OGTT 
makes it possible to estimate insulin sensitivity and 
insulin secretion by a range of different models. Since, 
these models have been derived in different ways they 
are not similar and not mutually interchangeable. 
Whether differences between indices also describe 
different biological mechanisms has not been fully 
elucidated. However, it is plausible that for instance an 
index modulated after IVGTT data is not reflecting the 
same insulin biology as an index modelled after other 
insulin response tests or simply being based on the 
incremental relative increase in serum insulin in 
relation to the increase in plasma glucose during the 
first part of an OGTT. Studies of the phenotypic and 
genetic correlations of various GSIS indices show that 
the level of shared genetic background varies between 
surrogate measures of insulin release. Although indices 
share genetic determinants to a large degree, a subset 
of variation is explained by non-shared genetic factors 
[131]. The CIR and insulinogenic index shared the 
majority of their genetic backgrounds, with genetic 
correlations of 0.80–0.99, while the BIGTT-AIR, which 
is modelled after an IVGTT [116], differed slightly more 
from the latter with genetic correlations of 0.78–0.87. 
Hence, there may be different genetic determinants of 
these indices and difference in associations with 
various indices for risk variants may point to more 
specific processes in insulin release. Figure 10 shows 
the normalised effects of T2D risk alleles on the two 
different OGTT-based GSIS indices – BIGTT-AIR and CIR 
based on the analyses in 7671 individuals. 
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It is evident that most T2D risk alleles fall on the 
diagonal line as expected in case of an equally strong 
impact on the two different insulin secretion estimates. 
However, for instance the rs10830963 variant at the 
MTNR1B locus deviates somewhat from the line 
displaying a stronger impact on the BIGTT-AIR index. 
Along the same lines, this variant showed a stronger 
effect on GSIS after an IVGTT than after an OGTT in data 
from Wood et al. [125] and it shows a higher than 
expected effect on BIGTT-AIR given its effect on T2D 
(Fig. 9 & 10) [132]. The MTNR1B locus was originally 
discovered via GWAS of fasting glucose in people 
without diabetes and was subsequently shown to be 
associated with T2D [133-135] and with GSIS estimated 
from OGTT data [133, 136]. Therefore, these studies 
have implied that the deleterious effect of the MTNR1B 
locus on T2D risk is likely to be due to a dysfunction of 
pancreatic islets and beta cells. MTNR1B encodes one of 
the two receptors of melatonin, a neurohormone 
involved in circadian rhythms. However, a conflict 
between the biological mechanism and direction of 
effect exists since reports have both shown that rare 
loss-of-function variants increase T2D risk [137] and 
that the common T2D risk allele of rs10830963, which 
is likely the causal variant at the locus [47, 138], 
correlates with higher MTNR1B expression in human 
pancreatic islets [134] and increased FOXA2-bound 
enhancer activity in human islets [138]. Whether 
decreased or increased melatonin signalling is the 
pathway to increased risk of T2D thus remains to be 
clarified and is currently intensely discussed [139, 140].   

A	 cluster-based	 view	 on	 physiological	
impact	 of	 type	 2	 diabetes-associated	
variants	
An alternative approach to follow-up on T2D variants 
with estimates of proinsulin processing, insulin 
secretion and insulin sensitivity was published in 2014. 
This was one of the largest effort investigating these 
traits thus far collecting association results for 37 T2D-
associated variants [75] in up to 17,237 individuals 
with dynamic measures and 58,000 participants with 
fasting samples [141]. Based on these association 
results, variants were clustered into groups with 
similar association patterns and hence similar 
predicted physiological mechanism. Five major groups 
of loci were formed depicting insulin sensitivity loci 
(PPARG, KLF14, IRS1 and GCKR), reduced insulin 
secretion and fasting hyperglycaemia (MTNR1B and 
GCK), defects in insulin processing (CARAP1) and 
defects in insulin processing and secretion without a 
strong effect on fasting glycaemia (TCF7L2, SLC30A8, 
HHEX, CDKAL1 and CDKN2A/B). Finally, 20 risk loci 
showed no clear grouping or associations [141]. Highly 
comparable results were found when analysing 
extended sets of T2D-associated variants [76, 142]. In 
these analyses, a relatively high fraction of the 
associated loci could not be assigned to a specific 
cluster. Recently, another study performed soft 
clustering of 94 T2D-associated variants with 47 T2D-
related traits and identified five distinct clusters of 
variants [143]. These five clusters were 1) beta cell loci, 

Figure	10.	Relationship	between	the	effect	of	
T2D	 risk	 alleles	 on	 two	 different	 indices	 of	
glucose-stimulated	insulin	response.	355 T2D-
associated variants [47] with MAF >2% were 
included. Insulin secretion was estimated from an 
OGTT by the corrected insulin response (CIR) [25] 
and the BIGTT-acute insulin response (BIGTT-
AIR) indices [116]. All effects are for the T2D-risk 
increasing allele. Analyses were performed in 
7671 non-diabetic individuals from the Inter99, 
Health2008, 1936 Birth Cohort and ADDITION-
Pro cohorts. Red and blue colours are shown for 
variants with P<0.001 for CIR and BIGTT-AIR, 
respectively, while light blue designates P<0.001 
for both traits. 
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2) loci with an impact on proinsulin, 3) loci associated 
with obesity, 4) loci associated with lipodystrophy-like 
insulin resistance and 5) loci associated with liver and 
lipids. Of these, clusters 1 and 4 were the largest 
containing 30 and 20 loci, respectively [143]. The 
finding of a cluster of variants associated with 
lipodystrophy-like insulin resistance is supported by 
previous reports [144, 145] and supports the notion 
that limited storage capacity of peripheral adipose 
tissue is an important etiological component in insulin-
resistant cardio-metabolic disease. These studies 
provide important information on the major 
mechanistic pathways from genetic susceptibility to 
T2D. 

 

Refined	endophenotypes	for	type	2	diabetes	
Papers 1-4 seek to shed light on a number of loci 
primarily found to be associated with T2D or levels of 
fasting glucose. Most of these studies were done in 
samples with OGTT and therefore primarily evaluated 
GSIS based on an oral stimulus. Furthermore, it is clear 
that solely analysing the crude insulin response and 
insulin action estimates will not bring knowledge on the 
more detailed processes involved the relationship 
between genetic risk variants and T2D pathogenesis. A 
more detailed estimation trying to disentangle 
processes related insulin synthesis, secretion and 
processing is needed to get closer to the biological 
mechanisms. However, studies of these more detailed 
phenotypes are generally small in size and therefore 
with little statistical power to pinpoint the modest 
effects inflicted by common genetic variants in humans. 
For instance, a study from 2010 applied a 2-hr 
hyperglycaemic clamp and in a subset a test of response 
to GLP1 and arginine during an extended clamp. While 
the investigations were very thorough, the number of 
individuals studied was rather limited ranging from 
123 to 336 depending on the test [146]. The study 
found associations with diabetes risk alleles at CDC123, 
THADA, ADAMTS9, BCL11A and MTNR1B with various 
specific aspects of beta cell function; however, the small 
sample size deterred any strong associations and hence 
weakened the conclusions.  

As mentioned, measurement of incretin hormones can 
reveal an impaired incretin effect, as shown for the 
TCF7L2 risk allele (Table 1). Similarly, measurement of 
serum C-peptide levels instead of serum insulin and 
establishment of secretion indices based on this can 

possibly delineate effects, which are otherwise hidden 
due to the relative instability of the insulin assay and 
due to variability in the first-pass effect by the liver. 
Another way to investigate the effect of the first-pass 
effect by the liver is to estimate insulin clearance. As for 
insulin secretion and sensitivity, this can be done by 
surrogate measures, mostly the fasting C-peptide to 
fasting insulin ratio, based on the assumption that C-
peptide is secreted from the beta cell in equimolar 
amounts with insulin, but is not subjected to first-pass 
metabolism by the liver. Alternatively, insulin clearance 
can be estimated by more refined clamp techniques 
[147]. A paper published in 2012 showed that several 
T2D-associated loci (CDKAL1, DGKB, JAZF1, GLIS3, 
FADS1 and IGF1) have an effect on insulin clearance as 
estimated from hyperinsulinaemic–euglycaemic clamp 
procedure in a sample of ~1300 individuals [148]. 
Possibly differences in insulin clearance may 
compromise the insulin response estimates obtained 
from an OGTT, since hepatic insulin clearance by the 
liver removes around 50% of insulin at first pass [149]. 
At the same time, it is likely that at least some T2D risk 
alleles have an impact on insulin clearance as part of the 
diabetes susceptibility mechanisms. 

Another related measurement is proinsulin, which is a 
precursor of mature insulin and C-peptide. Higher 
circulating levels of proinsulin are indicative of 
impaired beta cell function, beta cell stress or 
abnormalities in insulin processing or secretion [150]. 
A number of large-scale studies have applied proinsulin 
measurement to differentiate the genetic impact on 
different aspects of insulin biology. A GWAS from 2011 
investigated 10,701 individuals without diabetes in the 
discovery phase with replication in further 16,378 
individuals and found a number of genetic loci 
associated with circulating proinsulin levels [151]. 
Interestingly, some of these were T2D risk loci known 
at that time or which have been established since 
(TCF7L2, SLC30A8, MADD, ARAP1 and C2CD4A), at 
which the T2D risk alleles of all but ARAP1 were 
associated with increased proinsulin levels [151]. 
Together with other studies of the relationship between 
T2D risk variants and circulating levels of proinsulin, 
this study indicates that carriers of a number of T2D 
risk variants have impairments in the distal insulin 
processing and secretion pathways. 
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Table	1.	Summary	of	association	with	endophenotypes	for	108	GWAS-identified	variants	associated	with	T2D.		
Locus	name Variant Chr Position RAF OR Endophenotype References 
MACF1	 rs3768321 1 40035928 0.20 1.09 -  
FAF1	 rs58432198 1 51256091 0.88 1.07 -  
NOTCH2	 rs1493694 1 120526982 0.11 1.09 -  
FAM63A	 rs145904381 1 151017991 0.99 1.19 -  
PROX1	 rs340874 1 214159256 0.56 1.07 Reduced GSIS during OGTT and IVGTT [3, 141, 152]  
TMEM18	 rs62107261 2 422144 0.95 1.12 Obesity [153] 
GCKR	 rs1260326 2 27730940 0.61 1.07 Insulin resistance [87, 141, 154] 
THADA	 rs80147536 2 43698028 0.90 1.13 Reduced beta cell function [141, 146] 
BCL11A	 rs243024 2 60583665 0.46 1.06 -  
CEP68	 rs2249105 2 65287896 0.63 1.10 -  
RBMS1	 rs3772071 2 161135544 0.71 1.05 -  
GRB14/	
COBLL1	 rs10195252 2 165513091 0.59 1.07 Lipodystrophy-like insulin resistance [87, 145] 

IRS1	 rs2972144 2 227101411 0.64 1.10 Lipodystrophy-like insulin resistance [108, 141, 
145, 155] 

PPARG	 rs11709077 3 12336507 0.88 1.14 Lipodystrophy-like insulin resistance [48, 145] 
UBE2E2	 rs35352848 3 23455582 0.79 1.07 Reduced GSIS during OGTT [156] 
KIF9	 rs11926707 3 46925539 0.63 1.27 -  
PSMD6	 rs3774723 3 63962339 0.84 1.07 -  
ADAMTS9	 rs9860730 3 64701146 0.70 1.06 Insulin resistance [109] 
ADCY5	 rs11708067 3 123065778 0.77 1.09 Reduced GSIS during IVGTT, beta cell 

dysfunction [125, 141] 
IGF2BP2	 rs6780171 3 185503456 0.31 1.14 Reduced GSIS during OGTT and IVGTT [1, 125] 
ST6GAL1	 rs3887925 3 186665645 0.55 1.07 -  
LPP	 rs4686471 3 187740899 0.61 1.06 -  
MAEA	 rs56337234 4 1784403 0.50 1.06 -  
WFS1	 rs10937721 4 6306763 0.59 1.06 Reduced GSIS during OGTT [157, 158] 
FAM13A	 rs1903002 4 89740894 0.50 1.04 Lipodystrophy-like type insulin 

resistance [145] 
TMEM154	 rs7669833 4 153513369 0.70 1.06 Reduced GSIS during OGTT [159]  
ACSL1	 rs58730668 4 185717759 0.86 1.07 -  
ANKH	 rs146886108 5 14751305 0.99 1.41 Reduced GSIS during OGTT  
ARL15	 rs702634 5 53271420 0.69 1.05 Lipodystrophy-like insulin resistance, 

adiponectin 
[145, 160, 
161] 

ANKRD55	 rs465002 5 55808475 0.74 1.11 Lipodystrophy-like insulin resistance [145] 
POC5	 rs2307111 5 75003678 0.60 1.05 -  
ZBED3	 rs4457053 5 76424949 0.30 1.06 -  
PAM	 rs115505614 5 102422968 0.05 1.19 Reduced GSIS during OGTT [162] 
JADE2	 rs329122 5 133864599 0.43 1.04 -  
RREB1	 rs9379084 6 7231843 0.89 1.11 -  
CDKAL1	 rs7756992 6 20679709 0.27 1.15 Reduced GSIS during OGTT and IVGTT, 

insulin clearance 
[70, 104, 124, 
125, 141, 148] 

MHC	 rs601945 6 32573415 0.18 1.06 -  
VEGFA	 rs6458354 6 43814190 0.29 1.05 -  
TFAP2B	 rs3798519 6 50788778 0.18 1.06 -  
CENPW	 rs11759026 6 126792095 0.23 1.07 -  
SLC35D3	 rs9494624 6 137300960 0.29 1.04 -  
SLC22A3	 rs474513 6 160770312 0.52 1.04 -  
DGKB	 rs10228066 7 15063569 0.54 1.07 Reduced GSIS during OGTT, insulin 

clearance [3, 141, 148] 

JAZF1	 rs1708302 7 28198677 0.51 1.10 Reduced GSIS during OGTT, insulin 
clearance [2, 148] 

GCK	 rs878521 7 44255643 0.24 1.06 Reduced GSIS during OGTT [124, 163] 
KLF14	 rs1562396 7 130457914 0.32 1.06 Insulin resistance [141] 
MNX1	 rs6459733 7 156930550 0.67 1.06 -  
LPL	 rs10096633 8 19830921 0.88 1.07 Lipodystrophy-like insulin resistance [144] 
ANK1	 rs13262861 8 41508577 0.83 1.07 Reduced GSIS during OGTT [124, 164] 
TP53INP1	 rs10097617 8 95961626 0.48 1.04 -  
SLC30A8	 rs3802177 8 118185025 0.68 1.11 Reduced GSIS during OGTT and IVGTT, 

insulin processing 
[105, 107, 
125, 141, 151] 

GLIS3	 rs10974438 9 4291928 0.36 1.05 Reduced GSIS during OGTT insulin 
clearance [3, 148] 

CDKN2A/B	 rs10811660 9 22134068 0.83 1.27 Reduced GSIS during OGTT and IVGTT [1, 125, 141] 
TLE4	 rs17791513 9 81905590 0.93 1.10 -  
TLE1	 rs2796441 9 84308948 0.59 1.07 -  
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Locus	name Variant Chr Position RAF OR Endophenotype References 
ABO	 rs505922 9 136149229 0.33 1.05 -  
GPSM1	 rs28505901 9 139241030 0.75 1.09 -  
CDC123	 rs11257655 10 12307894 0.22 1.09 Reduced GSIS during OGTT [2, 146] 
ZMIZ1	 rs703972 10 80952826 0.53 1.07 -  
HHEX/IDE	 rs10882101 10 94462427 0.59 1.06 Reduced GSIS during OGTT [1, 104, 124, 

141] 

TCF7L2	 rs7903146 10 114758349 0.30 1.37 Reduced GSIS during OGTT and IVGTT, 
incretin dysfunction 

[125, 127, 
129, 130, 141, 
151, 165] 

PLEKHA1	 rs2280141 10 124193181 0.52 1.05 -  
INS/IGF2	 rs4929965 11 2197286 0.38 1.07 -  
KCNQ1	 rs2237895 11 2857194 0.43 1.12 Reduced GSIS during OGTT and IVGTT [125, 166, 

167] 
KCNJ11	 rs5213 11 17408404 0.36 1.07 Reduced GSIS during OGTT [168] 
HSD17B12	 rs1061810 11 43877934 0.29 1.05 -  
MAP3K11	 rs1783541 11 65294799 0.20 1.06 -  
ARAP1	 rs77464186 11 72460398 0.84 1.11 Reduced GSIS during OGTT and IVGTT, 

insulin processing 
[125, 141, 
151, 169] 

MTNR1B	 rs10830963 11 92708710 0.28 1.10 Reduced GSIS during OGTT and IVGTT [124, 125, 
136, 141] 

CCND2	 rs76895963 12 4384844 0.98 1.62 Reduced GSIS during OGTT [170, 171] 
KLHL42	 rs10842994 12 27965150 0.80 1.08 -  
HMGA2	 rs2258238 12 66221060 0.10 1.10 -  
TSPAN8	 rs1796330 12 71522953 0.57 1.05 Reduced GSIS during OGTT [2] 
WSCD2	 rs1426371 12 108629780 0.74 1.05   
HNF1A	 rs56348580 12 121432117 0.69 1.05 Reduced GSIS during IVGTT [125] 
MPHOSPH9	 rs4148856 12 123450765 0.78 1.05   
RNF6	 rs34584161 13 26776999 0.76 1.05   
KL	 rs576674 13 33554302 0.17 1.05 -  
SPRY2	 rs1359790 13 80717156 0.72 1.09 -  
NRXN3	 rs17836088 14 79932041 0.22 1.06 -  
RASGRP1	 rs34715063 15 38873115 0.12 1.10 -  
C2CD4A/B	 rs8037894 15 62394264 0.57 1.05 Reduced GSIS during OGTT and IVGTT, 

insulin processing 
[3, 4, 124, 
125, 151] 

PTPN9	 rs13737 15 75932129 0.76 1.05 -  
HMG20A	 rs1005752 15 77818128 0.72 1.08 -  
AP3S2	 rs4932265 15 90423293 0.27 1.07 -  
PRC1	 rs12910825 15 91511260 0.36 1.05   
FAM234A	 rs6600191 16 295795 0.82 1.06 -  
FTO	 rs1421085 16 53800954 0.42 1.13 Obesity [90] 
NFAT5	 rs862320 16 69651866 0.58 1.04 -  
BCAR1	 rs72802342 16 75234872 0.92 1.17 -  
CMIP	 rs2925979 16 81534790 0.30 1.05 -  
ZZEF1	 rs1377807 17 4045440 0.31 1.05 -  
GLP2R	 rs7222481 17 9785187 0.32 1.04 -  
HNF1B	 rs10908278 17 36099952 0.48 1.08 -  
MLX	 rs34855406 17 40731411 0.28 1.05 -  
TTLL6	 rs35895680 17 47060322 0.68 1.06 -  
BPTF	 rs61676547 17 65892507 0.19 1.06 -  
LAMA1	 rs7240767 18 7070642 0.38 1.04   
MC4R	 rs523288 18 57848369 0.24 1.05 Obesity [91] 
BCL2	 rs12454712 18 60845884 0.61 1.05 Insulin resistance [120] 
TM6SF2	 rs8107974 19 19388500 0.077 1.10 -  
PEPD	 rs10406327 19 33890838 0.52 1.04 Lipodystrophy-like insulin resistance [145] 
APOE	 rs429358 19 45411941 0.85 1.08 -  
GIPR	 rs10406431 19 46157019 0.56 1.05 Reduced GSIS during OGTT [124] 
HNF4A	 rs1800961 20 43042364 0.035 1.18 -  
MTMR3	 rs6518681 22 30609554 0.91 1.09 -  
PNPLA3	 rs738408 22 44324730 0.23 1.05 Liver function [172, 173] 
PIM3	 rs1801645 22 50356850 0.28 1.04 -  

T2D associated variants were obtained from Scott et al. [76].  Effect sizes in OR on T2D and risk allele frequencies (RAF) were obtained 
from Mahajan et al. [47].  
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Besides biologically mechanisms strictly related to 
glucose homeostasis such as described in the above 
sections, many other T2D-related pathophysiological 
mechanisms could be behind the association of genetic 
variants and T2D. Some risk variants increase risk of 
T2D by increasing risk of obesity while quite a lot have 
unknown intermediary mechanisms (Table 1) and any 
other T2D-defining mechanisms could be in play for 
these variants. For instance, the T2D-associated 
p.Ile148Met variant at PNPLA3 is associated with 
markedly increased risk of progressing into the entire 
spectrum of non-alcoholic fatty liver disease [172]. The 
mechanisms underlying this strong effect seem to be 
related to direct changes in hepatocyte and hepatic 
stellate cells lipid droplet biology [174, 175]. How this 
variant leads to an increased risk of T2D is unknown but 
it does not seem to be via insulin resistance, however, 
the variant paradoxically associates with lower risk of 
coronary artery disease [176]. 

 

Biology	 of	 loci	 associated	 with	 beta	 cell	
dysfunction	
The identification of intermediary endophenotypes for 
T2D-associated loci represents an important step 
forward in the disclosure of the specific nature of the 
relationship between genetic variation and the 
increased risk of T2D. However, a lot of work remains 
to map the biological details in these relationships in 
biological terms. For some of the loci I have studied in 
papers 1-4, very little progress has been made in this 
regard, while for others studies have offered insights 
into the more specific mechanisms behind these 
associations.  

The HHEX/IDE locus on chromosome 10 was one of the 
first GWAS findings of variants associated with T2D 
[69] and is among the T2D risk alleles with the 
strongest impact on GSIS [1, 104, 141]. For this locus, 
biological knowledge is relatively limited. It is currently 
not known, which of the genes in the region is the causal 
gene. The intergenic rs1111875 variant was the initially 
identified lead variant, however the latest GWAS of T2D 
meta-analysis pinpointed three independent 
association signals in the region with intergenic 
rs10882101 being the primary lead variant [47]. Fine-
mapping analysis to identify the causal variant of this 
association signal has led to a rather narrow 22 kb 
region likely to house the causal variant. This region 
spans HHEX	 and in the densely imputed data from 
Mahajan et al. [47], this region contains only 10 variants 

associated with T2D, however, whether the causal 
variant has its effect on HHEX or possibly IDE is 
currently unknown. While HHEX is the closest gene, IDE 
is a reasonable candidate gene due to its role in insulin 
biology. Insulin-degrading enzyme (IDE) is a ubiquitous 
peptidase, which was initially discovered as the enzyme 
responsible for insulin catabolism. However, it also has 
the ability to degrade several other polypeptides, such 
as beta-amyloid, amylin, and glucagon [177]. There is 
increasing evidence that improper IDE function, 
regulation or trafficking might contribute to the 
aetiology of metabolic diseases and IDE inhibitors have 
been evaluated in animal models for their potential to 
treat T2D with some positive indications of this being a 
successful future treatment option [178, 179]. A study 
of human islets showed that islets carrying the 
rs1111875 T2D risk allele had significantly decreased 
number of docked insulin granules and a tendency to 
reduced insulin exocytosis [180]. Although this is of 
interest, the mechanism for the effects on beta cell 
biology, GSIS and T2D observed for variants in this 
locus remains largely unexplained 10 years after the 
initial discovery. 

Another interesting locus, which was identified in some 
of the first GWAS of T2D, is CDKN2A/B [72]. Here 
rs10811660 was associated with increased risk of T2D 
and subsequently with decreased GSIS during OGTT 
[181] and IVGTT [125].  In the most recent GWAS of 
T2D, rs10811660 with a relatively high OR of 1.27, and 
five additional distinct signals were found in the locus 
[47]. For rs10811660, the 99% credible set only spans 
1.5 kb and contains five variants, making it likely that 
rs10811660 is causal. Moreover, a variant in the locus 
has been shown to associate with coronary artery 
disease and myocardial infarction [74, 182, 183], 
however, this variant and the T2D-associated 
rs10811661 variant are not correlated (r2<0.01). The 
CDKN2A and CDKN2B genes encode p16INK4A and 
p15INK4B, respectively, which regulate proliferation, 
oncogenesis, senescence and ageing [184]. Both 
CDKN2A and CDKN2B are expressed in pancreatic beta 
cells [185] and are implicated in pancreatic islet 
regenerative capacity [186, 187]. Of interest, human 
carriers of rare CDKN2A loss-of-function mutations, 
which are a cause of familial melanoma, displayed 
increased insulin secretion, impaired insulin 
sensitivity, and reduced hepatic insulin clearance 
compared to non-carriers [188], which together with 
functional data [186, 188], points to CDKN2A being the 
T2D-related effector transcript of the region. Functional 
genomics data from the recent GWAS of T2D indicated 
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that regulatory mechanisms in human islet link the 
genetic variation with beta cell function [47].  

Of interest, other of the variants and loci investigated in 
papers 1-4 also map to regulatory sequence in human 
islets indicating similar genomic mechanisms as for 
CDKN2B. This is the case for the CDC123, IGF2BP2, 
JAZF1 and GLIS3 loci [47, 138, 189, 190] indicating that 
T2D-risk variants are disproportionately located in 
DNA sequences involved in the regulation of islet-gene 
transcription, further highlighting the central role of the 
regulation of insulin secretion in genetic risk of T2D. 

 

Future	directions	within	this	field	
It remains an important objective to seek to elucidate 
the intermediary pathophysiological processes 
influenced by individual T2D risk variants, as this can 
be seen as a first but important step in finding the 
biological and physiological relationship between 
genetic variants and risk of T2D. However, the modest 
effect size imposed by most GWAS-identified variants 
found in large-scale studies impedes the statistical 
power to find intermediary effects since sample sizes 
for studies of more detailed phenotypes are generally 
much lower than for case-control studies of T2D. Larger 
studies — by incorporating more meta-analysis of 
cohort data and by establishment of larger sample sets 
— are needed to overcome this challenge. However, the 
resources needed to build such resources, which are 
severely larger than making large biobanks holding 
fasting or random samples, will always limit these 

efforts. For instance, UK Biobank is a major current and 
future resource for epidemiological and genetic-
epidemiological research and does not include any 
OGTT data or other detailed physiological data relevant 
for T2D. Theoretically, it may be possible to substitute 
quantitative estimates of endophenotypes such as 
insulin sensitivity and insulin secretion by surrogate 
biomarkers from biomarkers from serum or urine 
metabolomics or proteomics data and by this enable 
application in a higher number of individuals and large-
scale analysis.  

As will be discussed in Part 5, the implementation of 
genetic data in the improvement of precision medicine 
may be relying on quantitative measures and the 
genetic determinants of quantitative T2D-related 
measures to ensure success. A reason for this 
hypothesis is that risk of T2D-related complications 
seems to be inflicted by a graded, linear increase in 
physiological variables, and not to be driven by 
thresholds arbitrarily defining categorical disease 
entities. For instance, this may well be the case for T2D-
related risk of CVD, for which studies have shown a 
continuous or U-shaped relationship between fasting 
and post-OGTT glucose levels and risk of CVD, which is 
apparent below thresholds for diagnosis of diabetes 
[191-193]. Therefore, a molecular understanding of 
quantitative diabetes-related measures may well prove 
to be crucial for finding causes and individualised 
preventive approaches for important clinical outcomes.  
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PART	3.	MASSIVE	NUCLEOTIDE	SEQUENCING	IN	SEARCH	FOR	RARE	SUSCEPTIBILITY	ALLELES	
 

The design of GWAS has inherent limitations. First, by 
GWAS, it is only possible to investigate known variation 
and at least in the first number of years of GWAS this 
was a major limitation. However, after completion of 
larger sequenced project, such as the 1000 Genomes 
Project [194] rather exhaustive scaffolds for imputation 
exist. Second, genome-wide array based genotyping 
only covers common variants with MAF above 5%, 
although that newer and larger imputation reference 
panels have pushed the lower boundary of genotype 
imputation to enable coverage of low-frequency 
variants with MAF between 0.5% and 5%, and possibly 
even to a MAF of 0.1%, depending on the specific 
population group, the genotyping array and the 
imputation panel chosen [63] (Fig. 3). However, for rare 
variants (MAF <0.5%) a simple extension of the GWAS 
paradigm is probably not sufficient since genotype 
imputation is inaccurate and since single variant tests 
are underpowered for the detection of such variants. To 
circumvent the lack of statistical power of single marker 
tests several collapsing or burden methods that 
simultaneously analyse multiple rare variants are 
applied [195-198]. Because of the limitations of GWAS, 
especially in the early days with relatively sparse 
imputation panels available, a number of studies have 
aimed to include sequencing data in genetic association 
studies to discover novel variants and to include rare 
variants with MAF below 0.5% in the evaluation, 
although the costs of such studies are markedly higher 
than for genotype-based studies.  

 

Rare	variants	in	common	disease?	
As described, one of the ambitions of performing 
sequencing in complex disease is to evaluate the role of 
rare variants in common complex disease. While it is 
well accepted and empirically proven that common 
variants are important in common disease [199], the 
role of rare variants has been discussed for years [200]. 
The rare variant hypothesis suggests that rare alleles 
with relatively high penetrance are the primary drivers 
of common disease [201, 202], and this hypothesis has 
received renewed attention in the last few years. Rare 
variants are common in the sense that they severely 
outnumber common variants in the human genome 
[194, 203, 204]. Furthermore, evolutionary theory 

predicts that disease-causing alleles should be rare 
since even a minute reduction in fitness will keep allele 
frequencies low due to negative selection [205]. These 
variants are predicted to have stronger effects on 
disease (allelic OR>2) [198, 206], underlying 
arguments for their study as an addition to GWAS [204, 
207]. While these arguments have previously been 
theoretical, we have in the past decade moved to a stage 
where we can empirically and systematically 
investigate this hypothesis. Deep whole genome or 
exome sequencing in large sample sizes allow for the 
interrogation of the full spectrum of genetic variation, 
including the many variants, which are too rare to be 
accurately studied through current GWAS and 
imputation strategies. This has been possible trough 
advances in sequencing technologies over the past 
decade leading to higher performance and lower costs 
[208]. The results are of more than academic interest, 
as an understanding of the genetic architecture of a 
disease is a crucial and powerfully tool to achieve 
knowledge for the application of precision medicine. 

 

Exome-sequencing	 based	 discoveries	 in	
metabolic	traits		
The ultimate sequencing-based design is to apply deep 
whole-genome sequencing but it also carries the 
highest costs and the biggest bioinformatic workload. 
An alternative approach is to perform exome 
sequencing [209], which lowers the sequencing burden 
to ~1-2% of whole genome sequencing and hence 
reduces costs. Exome sequencing would seem as a 
logical first conquest, relying on the hypothesis that 
functional disease-associated variation resides in the 
coding regions of the genome. Strong-effect coding 
variants may be molecular guides  into the pathological 
relevance of a gene and potentially establish a direct 
causal link between gene gain- or loss-of-function and 
disease risk [142, 210, 211]. This can especially be the 
case when there is evidence of multiple independent 
variant associations (an “allelic series”) within a gene 
[210-212]. Exome sequencing has proven valuable in 
the search for mutations responsible for Mendelian 
diseases [213, 214].  
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While both whole-genome and exome sequencing are 
now routinely done on a large scale in thousands of 
samples, this was not the case when we initiated a 
large-scale exome sequencing project in 2008. We 
established the Lundbeck	Foundation	Centre	for	Applied	
Medical	 Genomics	 in	 Personalised	 Disease	 Prediction,	
Prevention	and	Care and initiated an exome sequencing 
study of 1000 T2D patients and 1000 controls without 
T2D at a sequencing depth of 8× with the initial aim to 
investigate the role of rare variants with high impact on 
risk of T2D. The main results are included as paper 5 of 
the dissertation. At the point in time when the project 
was initiated, sequencing technology was still not at a 
stage in which it was possible to investigate 2000 
samples efficiently and the sequencing in the project 
took more than 1½ years on Illumina Genome Analyzer 
II technology at BGI, Shenzhen, China. In 2000 
individuals, we detected 70,182 variants with a 
frequency above 1%. Association analyses of metabolic 
traits were performed in a three-stage design (Fig. 11).  

 

Figure	 11.	 Flow	 chart	 of	 the	 discovery	 and	 replication	
phases	of	the	LuCamp	project. From paper 5. 

 

In stage 1, we performed association analysis in the 
exome sequenced individuals, which did not reveal 
statistically significant associations. In stage 2, we 

genotyped 16,192 selected coding variants in ~16,000 
Danish individuals and performed association testing 
with 12 metabolic traits. Based on the association 
results, we found 45 SNPs, which we selected for 
replication in more than 60,000 independent European 
samples. Finally, we found three missense variants in 
MACF1	 p.Met2290Val, COBLL1 p.Asn939Asp and 
CD300LG p.Arg82Cys, which were associated with a 
metabolic trait. Two variants were associated with T2D, 
while CD300LG p.Arg82Cys was associated with 
circulating levels of high-density lipoprotein (HDL)-
cholesterol and triglyceride. Although the strength of 
sequencing-based association studies in general would 
be to detect low-frequency and rare variants, two of the 
three identified variants were common, while CD300LG 
p.Arg82Cys had a MAF of 3.5%. All three associations 
have since been replicated in independent data [142, 
176, 197, 215-217]. 

The association of the CD300LG p. Arg82Cys variant 
with decreased levels of serum HDL-cholesterol and 
increased serum triglycerides in the general population 
represents a true sequencing-based finding of that era 
and has since been replicated in studies applying the 
exome chip [176, 197, 215] or sequencing-based 
imputation of GWAS data [217]. While one of the 
promises of exome sequencing has been postulated to 
be a greater ability to pinpoint biological mechanism 
from association of coding variants, the relationship 
between CD300LG p.Arg82Cys and lipid metabolism has 
not been elucidated. The protein encoded by CD300LG 
belongs to the CD300 family of membrane-bound 
molecules, which have broad and diverse 
immunological actions, including the ability to 
recognise and interact with extracellular lipids [218-
220]. The CD300LG protein is expressed in a broad 
range of tissues with highest expression in the placenta, 
adipose tissue, and skeletal muscle [5, 221]. The 
biological functions of CD300LG in adipose tissue and 
skeletal muscle are largely unknown. 

Variants in the COBLL1/GRB14 region had already 
previously been associated with fasting insulin levels 
[87, 88] and the impact on T2D was simultaneously 
with our discovery found in a classical GWAS design 
[53] and was later also found in South Asians 
individuals [222]. Furthermore, variants in the locus 
partly correlated with p.Asn939Asp are also associated 
with waist-hip ratio [95, 223], HDL-cholesterol and 
triglyceride concentrations [224]. Recent papers have 
pointed to that this locus is likely to influence T2D risk 
through a decreased capacity for fat storage in 
peripheral adipose tissue [144, 145]. Subsequently, it 
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has been discussed what the causal element is in this 
locus. GRB14 is an attractive biological candidate gene 
for T2D since studies of Grb14-deficient mice show 
improved glucose homeostasis despite lower 
circulating insulin levels and enhanced insulin 
signalling in liver and skeletal muscle [225]. The latest 
statistical evidence, derived from an exome chip-based 
analysis of more than 450,000 individuals shows that 
the association signal of this locus is likely not driven by 
the COBLL1 p.Asn939Asp variant but by non-coding 
variants at the locus (Fig. 12, page 31), yet the causal 
variant and biological mechanism have not been 
determined [142]. 

The T2D-associated variant in MACF1 is common (MAF 
23.4%) and had probably not been detected previously 
due to the incomplete genomic coverage of HapMap-
based imputation of GWAS of the time. MACF1 is a very 
large gene spanning 400 kb, consisting of a large 
number of exons and is expressed in several different 
isoforms. Recent studies have shown that additionally 
four coding missense variants (p.Ile39Val, 
p.Lys1625Asn, p.Met1424Val, p.Ala3354Thr) associate 
with T2D [142]. All these variants are common and 
correlated with each other and thus far, these 
association signals have been statistically 
undistinguishable. The recent paper in which these four 
variants were discovered also made an analysis to 
estimate the probability that coding variants were 
driving the observed association signal as compared to 
non-coding variants. For the MACF1 locus, the overall 
probability attributed to coding variants for association 
with T2D for this locus is compatible with a partial role 
for coding variants [142] (Fig. 12). MACF1 encodes a 
protein that forms bridges between different 
cytoskeletal elements, by stabilising and guiding 
microtubule growth along actin filaments. Loss-of-
function studies using knockout mouse models have 
shown pivotal roles of MACF1 in embryonic 
development, skin integrity maintenance, neural 
development and bone formation [226]. As such, there 
is no obvious biological connection between MACF1 
and T2D.  

 

Sequencing	 studies	 of	 type	 2	 diabetes	 and	
related	phenotypes	
The described exome sequencing study published in 
paper 5 was an early attempt to implement sequenced-
based association studies but suffered from a number 
of shortcomings. First, the sequencing was rather 

shallow at 8× depth leading to problems in accurately 
calling rare variants in individual samples. 
Furthermore, due to immature sequencing technology, 
the sequencing process was performed over a long 
period and shifts and developments in the assays 
introduced bias and difference in sequencing depth 
between cases and controls making association analysis 
difficult and forcing us to focus on variants with a MAF 
above 1% thereby removing the analysis of rare 
variants [5]. As such, this study can be seen as an initial 
steppingstone on the path to larger and more detailed 
studies.  

Other early sequencing studies with a focus on rare 
variants and the risk of T2D have focussed on single 
candidate genes selected based on prior association 
between common variants and T2D in GWAS. A study of 
MTNR1B – a locus at which common variants in 2009 
were found to be associated with fasting glucose and 
T2D [133, 135] – performed sequencing of 7632 
individuals and demonstrated a burden of rare variants 
associated with increased risk of T2D. Performing 
functional studies of all variants and grouping them 
based on functionality increased the effect on T2D to an 
odds ratio of 5.7 [137]. Along the same lines, a study of 
SLC30A8, a locus at which the common coding T2D-
associated p.Trp325Arg variant was discovered in 
GWAS [69], performed sequencing or genotyping in 
150,000 individuals and discovered a burden of 
putative loss-of-function variants with a protective 
effect on T2D [211]. This study suggests that inhibition 
of ZnT8 may be a therapeutic strategy for T2D. As 
described in Part 2, the common p.Arg325Trp variant in 
SLC30A8 is associated with T2D and with decreased 
GSIS [69, 107] and with increased proinsulin to insulin 
ratio [227], which is in line with studies of mice [228]. 
SLC30A8 encodes a zinc transporter, ZnT8, which is 
expressed in the endocrine pancreas and has an 
emerging role in glucose homeostasis due to the 
requirement for zinc in the crystallisation of insulin 
within secretory granules. However, a conflict between 
the interpretations of the common variant associations 
compared to the T2D-protective effect of rare loss-of-
function variants, which also suggests that the effects of 
both ZnT8 activators and inhibitors will need to be 
examined in suitable models prior to clinical trials in 
human [229]. 

Later attempts to pinpoint T2D risk variants through 
whole exome or genome sequencing have been 
technically more successful than the study described in 
paper 5, yet have not produced a wealth of positive 
findings of association between individual rare variants 
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or a gene-based burden of rare variants with T2D. 
While exome sequencing of 2000 samples at a medium 
depth was an enormous task in 2008, the development 
in sequencing technologies has since been fast and the 
amounts of data we produced for paper 5, are now 
routinely produced in a fast manner [208]. We repeated 
the exome sequencing experiment in the same cases 
and controls, but at a higher depth of 56× enabling 
evaluation of the contribution of rare variants. We 
performed single variant analysis and collapsing test of 
gene-based bins of rare variants, however, did not 
detect novel variants or gene-based burden of rare 
variants associated with T2D [230]. Our study was 
underpowered to detect modest genetic effects, but if 
much of the heritability of T2D is explained by variants 
in a modest number of genes, we should have detected 
at least one associated locus at our Bonferroni 
significance threshold. Thus, the empirical results, 
combined with the statistical power simulations, 
suggested that when clustered in fewer than 20 genes, 
coding variants of moderate effect do not account for 
much of the missing heritability of T2D. These data have 
recently been included in collaborative T2D exome 
sequencing study to increase sample size.  

While exome sequencing remains an important 
intermediate, much focus has been oriented towards 
whole genome sequencing. In 2014, DeCode Genetics 
published the first whole-genome sequencing study of 
T2D including whole genome sequencing of 2,630 
individuals and imputation into 11,114 patients with 
T2D and 267,140 individuals without diabetes. This 
study discovered four novel low-frequent or rare 
variants associated with the disease [170]. Of interest, 
among these findings was the discovery of a protective 
variant in CCND2 [170], which follows the identification 
of rare protective variants in SLC30A8 [211] indicating 
that rare variants potentially leading to loss-of-protein 
function may not necessarily lead to increased risk of 
disease. Furthermore, two low-frequent missense 
variants in PAM were identified. We replicated these 
findings in Danish samples [170]. In 2016, the GoT2D-
T2DGenes Consortium published the analysis of an 
huge amount of data consisting of whole genome 
sequencing in 2657 individuals with or without T2D 
with imputation into 111,548 samples, which was 
supplemented with exome sequencing of 12,940 
individuals and exome chip genotyping in ~80,000 
individuals [216]. In these massive amounts of sample, 
very few novel susceptibility genes were discovered. 
The genome analysis replicated most findings 
previously done by DeCode Genetics, but did not 

pinpoint novel risk alleles with MAF <5%, while the 
exome-sequencing focused analysis found a coding 
susceptibility variant in East Asians located in PAX4. 
Furthermore, both empirical and simulated data from 
this study suggested that low-frequency and rare 
variants contribute much less to T2D heritability than 
do common variants [216]. Another large-scale 
international collaborative sequencing effort was 
performed by the UK10K consortium and the main 
results of association analyses with metabolic traits 
were published in 2015 [62]. The consortium 
performed whole genome sequencing of 3781 
individuals and in line with studies described above the 
findings of novel association signals were relatively 
sparse, however, included rare variants in APOC3 and 
LDLR associated with serum triglyceride and low-
density lipoprotein (LDL) cholesterol, respectively [62]. 
The APOC3 variant was simultaneously found in other 
efforts [231-233]. In fact, within lipid traits, some very 
early sequencing studies were pioneering for targeted 
sequencing of a single gene with high prior likelihood of 
being involved in disease or sequencing individuals at 
the extreme of the lipid phenotype distribution [210, 
234, 235]. The rather strong impact of certain coding 
variants on circulating lipid levels has also generated 
positive findings in studies of whole exomes or 
genomes besides the CD300LG variant discovered in 
paper 5. Among such studies are the massive UK10K 
sequencing study [62] and investigations of  the DeCode 
Genetics resource [217]. Recently, Dewey et al. 
published the study of the exome sequence data of 
50,726 individuals combined with lipid levels from 
electronic health records [236]. The study confirmed 
the association of genetic variants in genes that are drug 
targets (NPC1L1 and PCSK9) and identified variants or 
a gene-based burden of variants associated with plasma 
lipids among others at APOC3, LDLR and APOB [236]. As 
for other studies [62, 237] this study observed the 
expected inverse relationship between allele frequency 
and effect size. 

These initial massive whole-genome sequencing-based 
papers taking the first dive into the landscape of rare 
variants in T2D susceptibility have all been 
characterised by relatively few novel findings. With 
exception of picking of the lowest hanging fruits on the 
tree of rare variants, although we cannot exclude the 
role of rare variants in T2D susceptibility, the individual 
effect sizes of these variants are relatively low. 
Therefore, where initial studies were rather small it is 
clear that similar or even higher than GWAS-like sample 
sizes are needed for the individual detection and 
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validation of such variants using the best of methods 
developed for individual and combinations of rare 
variants [198, 238]. Nevertheless, exome sequencing, 
and possibly genome sequencing, are important in 
future genetics studies of complex diseases but may due 
to higher costs currently be best placed to complement 
array-based GWAS by producing allelic series of rare 
variants, which aids experimental gene 
characterisation and points to the effect of modulating 
the target by drugs.   

 

From	sequencing	back	to	chip-genotyping	to	
discover	 the	association	of	coding	rare	and	
low	frequency	variants	
As discussed previously, low-frequency variants and 
especially rare alleles are poorly characterised by 
GWAS genotyping arrays. Sequencing across the exome 
or genome can directly assay low-frequency and rare 
variants but such approaches are currently still rather 
costly and studies of tens to hundreds of thousands of 
individuals are limited. One proposed method for 
testing low-frequency and rare variants is to first 
sequence the exome to discover the variation and then 
to genotype the discovered variants in a larger number 
of individuals from the same or similar populations to 
test for association with phenotype. The Illumina 
Human Exome genotyping array (exome chip) was 
designed based on this principle and contains ~200,000 
coding sequence variants discovered from sequencing 
the exomes of ~12,000 individuals [239]. 

By applying the cheaper array genotyping technology, 
is has been possible to reach higher sample sizes which 
has contributed with both discovery of novel variants in 
the rare and low frequency areas and with interesting 
contributions to evaluation of the importance of coding 
variation in complex diseases. Such studies have been 
performed for a number of different human diseases 
and phenotypes. In the largest study of T2D published 
in 2018, we performed exome array genotyping in 
81,412 patients with T2D and 370,832 individuals 
without diabetes and by this 40 coding variant signals 
across 38 loci were discovered, hereof 16 novel and five 
driven by a variant with MAF <5% [142]. All had modest 
effect sizes with OR below 1.5. To seek to identify the 
causal variant responsible for the association signals, 
and thereby seek to determine if coding variants are 

causal for the coding lead variants, a credible set of 
variants accounting for 99% of the posterior 
probability of driving the association was performed. 
This approach incorporated an annotation-informed 
prior model of causality, which boosts the posterior 
probability of driving the association signal that is 
attributed to coding variants. Of interest, evidence for a 
causal signal coming from a coding variant was 
observed in only 16 of 38 loci and in 13 of 38 loci, the 
association signal was clearly driven by non-coding 
variation (Fig. 12) [142]. Hence, the basic idea that 
coding variant signals would directly lead to biological 
insight in complex disease is challenged, and great care 
is needed to identify causal contribution for such coding 
disease-associated variants. However, this may 
especially be the case since most coding lead variants 
identified thus far are common in the population. While 
common variants are typically in LD with a number of 
other coding or non-coding alleles, rare variants tend to 
be in LD with very few variants and hence the likelihood 
that rare coding variants associated with disease are 
causal and change the function of the gene in question 
is higher. 

While this analysis sheds light of the relative 
contribution of coding and non-coding variants at 
specific loci identified through a coding variant, it is 
biased in relation to the relative contribution of coding 
and non-coding causal variants to the general genetic 
architecture of T2D. The recent large-scale GWAS based 
on HRC-imputed data in a large sample size [47] 
described earlier may shed some light on the overall 
relative contribution of coding and non-coding variants 
to inheritance of T2D. Of 51 loci with strong indications 
of only a single causal variant, eight of these lead 
variants were coding missense variants. This finding 
indicates that coding causal variants are actually over-
represented compared to their genomic abundance, 
which is somewhat in contrast to the initial findings 
from GWAS [240], however this conclusion may be 
biased towards coding variants. In essence, the genomic 
complexity is huge and there is no certainty that finding 
a coding variant association signal thereby also identify 
the causal variant and gene – when a coding variant is 
lead it may be due to a non-coding causal variant and 
the other way around. What is needed is full genomic 
coverage in large numbers of individuals to narrow the 
possible local causal variant(s) by statistical and 
functional means. 
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Figure	12.	The	probability	of	coding	variants	explaining	the	association	signal	
in	37	loci	discovered	through	exome	chip	analysis. Results were obtained from 
Illumina Exome Chip analysis of 81,412 patients with T2D and 370,832 individuals 
without T2D combined with GWAS data of 50,160 T2D cases and 465,272 controls. 
From ref. [142]. 

 

What is also evident is that the sample size of studies is 
of outmost importance in the attempt to identify 
variants with lower frequency. This is illustrated by the 
recent GWAS of T2D, which found an unprecedented 
number of low-frequency and rare variants associated 
with T2D [47]. This effort identified 56 low-frequency 
and 24 rare variants in 60 loci, of which 6 were known 
T2D loci. Of interest, 14 of these 80 variants had an OR 
above 2 and these 80 risk variants explained 1.1% of 
phenotypic variance in T2D. These findings are a 
tremendous progress in discovery of risk variants with 
lower frequency but are still in agreement with the 
conclusion that low-frequency and rare variants 
contribute much less to T2D heritability than do 

common variants. The obtained progress largely stems 
from the large sample size of 900,000 individuals 
combined with the dense imputation applying the HRC 
reference panel.  

Also, for other metabolic traits, data coming from the 
exome chip has contributed substantially to the 
understanding of coding variants in the genetic 
contribution to variation in these phenotypes. A major 
study of more than 300,000 individuals found 444 
independent variants in 250 loci associated with 
circulating lipids (total cholesterol, LDL-cholesterol, 
HDL-cholesterol and triglyceride) [176]. The paper 
highlighted the different origin of lipid-changing 
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variants since associated variants show different 
pattern of association with related diseases and 
phenotypes such as T2D, coronary artery disease, age-
related macular degeneration and liver fat and the 
study serves as an important paper to qualify targets for 
medical intervention based on genetic information 
[176]. The primary analysis of BMI included 526,508 
individuals and identified 14 coding variants in 13 
genes. Most notably for this analysis, some rare alleles 
were identified with large impacts on BMI. The 
strongest impact was for a variant with a MAF of 0.01% 
in MC4R, which showed an effect of 0.54 SD of BMI per 
minor allele equivalent to 7 kg body weight per BMI-
increasing allele [67]. Along the same lines, analyses of 
waist-hip ratio (WHR) adjusted for BMI identified 41 
independent association signals, hereof a few rare 
variants [241]. Thus, the latter obesity-related paper of 
WHR identified fewer association signals than the 
former paper investigating BMI, which may be due to 
lower sample size, lower phenotype precision, sex-
dimorphism, different genetic architecture or other 
factors. 

While data generated from the exome chip have 
contributed quite a lot to understanding the genetic and 
biological contribution to metabolic traits, this exact 
chip can only be seen as an intermediate step on the 
way to higher resolution of rare variants in a high 
number of samples. As described, the exome chip is 
based on exome sequence data from 12,000 samples 
predominantly from Europeans limiting the range of 
rare alleles to what has been found in these samples. In 
European samples, 81.6% of protein-altering variants 
with MAF >0.5% are captured using the Exome Chip, 
while this numbers decreases to 25% when considering 
all MAFs [216]. These numbers are based on ~4500 
European samples and the fractions covered by the 
Exome Chip will decrease when comparing with higher 
sample sizes and when considering individuals of non-
European origin. It is thus evident that a better capture 
of rare alleles still requires exome or genome 
sequencing. Furthermore, accurate calling of genotypes 
from array-based technologies is challenging the lower 
the number of alternative allele carriers possibly 
setting a lower boundary for the MAF of variants being 
interrogated by this approach.  

 

Applying	genome	and	exome	sequencing	to	
study	a	complex	phenotype	
Paper 6 serves as an example of using and combining 
whole genome and exome sequence-based data to 
elucidate the genetic architecture of a complex 
phenotype. The study was performed in collaboration 
with DeCode Genetics in Iceland. At DeCode Genetics, a 
major genetic resource has been built applying the 
principle of collecting samples from as many as possible 
from the Icelandic population. A subset of these 
samples has been whole genome sequenced to discover 
variation in the Icelandic genome [242]. At the time 
when we carried out the project described in paper 6, 
1176 individuals had been whole-genome sequenced – 
a number which has since increased substantially. The 
whole-genome sequence data were subsequently used 
to impute into all samples, which had been genotyped 
by genome-wide arrays. In the Icelandic population, 
genotype imputation is made more accurate through 
long-range phasing [243]. Additionally, the Icelandic 
genealogical database allowed for further propagation 
of the sequence information, applying genealogy-based 
imputation, into relatives of the chip-genotyped 
individuals [244]. To capitalise on the data generated 
previously [5], we used the genotype data set of 16,192 
coding variants produced in stage 2 (Fig. 11), to study 
the impact of coding variation on the levels of the water-
soluble B vitamins, vitamin B12 and folate, in the general 
population. Vitamin B12 is solely produced by bacteria 
and archaea and the only natural source of this vitamin 
for humans are through food items of animal origin 
[245]. Vitamin B12 and folate are enzyme cofactors or 
substrates in one-carbon metabolism, a process 
whereby folate transfers one-carbon groups in a range 
of biological processes including DNA synthesis [245, 
246]. Several epidemiological studies have observed 
associations between lower circulating vitamin B12 
levels and adverse cardio-metabolic health profiles, 
with insulin resistance, adiposity and cardiovascular 
disease [247-251]. 

In the study presented in paper 6, we performed meta-
analyses of results from ~8400 Danish individuals with 
the results from a high-coverage GWAS from the 
Icelandic population to obtain a sample size above 
30,000 individuals. In this analysis, we found 13 genetic 
loci, which were associated with variation in the levels 
of circulating vitamin B12 or folate. Of the 11 loci 
associated with serum vitamin B12, five were novel and 
six were previously reported either in populations of 
European or East-Asian ancestry [252-255] (Fig. 13).  
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Figure	 13. Genes	 that	 associate	 with	 serum	
vitamin	 B12	 and	 folate	 levels.	 Genes previously 
identified to possess variants associated with serum 
levels of vitamin B12 are shown in green. In blue are 
novel genes identified in paper 6. In red, genes with 
variants previously associated with serum folate 
and in purple are novel genes for serum folate. 
Abbreviations: HC: heptocorrin (TCN1); IF: intrinsic 
factor; R-A-P: receptor-associated-protein; CUBN: 
cubilin; TCII: transcobalamin II (TCN2); TCII-R: 
transcobalamin II receptor (CD320); MMACHC: 
methylmalonic aciduria (cobalamin deficiency) C 
type; MMAA: methylmalonic aciduria; ABDC4: ATP-
binding cassette, sub-family D, member 4; LMBD1: 
LMBR1 domain containing 1; FOLR1– 3: folate 
receptors 1–3; Ado-B12: adenosyl-cobalamin; Me-
B12: methyl-cobalamin; Me-mal-CoA: methyl-
malonyl-coenzymeA; Suc-CoA: succinyl-
coenzymeA; MUT: methylmalonyl-CoA mutase; H. 
pylori: helicobacter pylori; DHFR: dihydrofolate 
reductase; MS: methionin synthase; THF: 
tetrahydrofolate; 5,10-MTHF: 5,10-methyl-
tetrahydrofolate; Hcy: homocysteine MTHFR: 5-
methyl-tetrahydrafolate reductase. From paper 6 
with permission. 

Association analyses with serum folate yielded one 
novel locus, FOLR3, and confirmed the reported MTHFR 
locus (Fig. 13). As discussed above, the mere finding of 
a coding variant associated with the trait or disease 
does not necessarily imply that this is the causal variant. 
In this study, the meta-analysis was biased towards 
finding coding variants, since the Danish data contained 
only coding variation discovered in exome sequencing, 
thus resulting in higher combined sample size for 
coding variants [6]. To evaluate each locus for a 
stronger non-coding association signal, we used the 
Icelandic whole-genome imputed data. Interestingly, 
the strongest signal at 10 of the 11 loci associated with 
serum B12 in the Icelandic genome-wide data 
corresponded to a coding variant with only the FUT6 
locus having a stronger non-coding signal. Although we 
did not perform advanced modelling, as previously 
presented for T2D, this is still indicative of the coding 
variants as the most likely causal variant at these loci.  

Biologically, the identified coding variants fall in genes 
encoding proteins known to be involved in the 
metabolism and signalling pathway of vitamin B12 and 

folate (Fig. 13). This is a rather unique scenario within 
sequencing- or GWAS-based discoveries in complex 
traits where findings generally tend to fall in unknown 
biological disease mechanisms [99, 256]. The known 
biological effects of these genes also further strengthen 
the likelihood that the identified coding variants are 
causal.  

One of the interesting perspectives of finding genetic 
variants associated with a phenotype or disease is that 
it may enable studies of the causal relation between 
phenotypes. Mendelian randomisation is a method 
using variation in genes of known function to examine 
the causal effect of a modifiable exposure on disease in 
observational studies and has become a method of 
choice to strengthen causal inference in observational 
research. Mendelian randomisation is based on the 
realization that a genetic variant associated with an 
exposure can be used as an instrumental variable to 
estimate the causal effect of the exposure on an 
outcome of interest [257, 258]. Such studies have also 
been performed to shed light on the causal relationship 
between circulating vitamin B12 levels and cardio-
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metabolic outcome. These studies are based on genetic 
findings of paper 6 and other GWAS of vitamin B12 and 
folate levels [6, 252-255]. Two studies found no 
causative effect of vitamin B12 levels on BMI [259] or 
levels of circulating lipids and blood pressure [260]. In 
agreement, a recent study applying a 2-sample 
Mendelian randomisation design and thereby reaching 
a rather large sample size found no evidence of causal 
effects on BMI and other adiposity-related phenotypes, 
fasting insulin or lipid levels, yet did observe 
indications of a causal effect of vitamin B12 on fasting 
glucose levels [261]. In general, these studies do not 
support the causal role of vitamin B12 levels in relation 
to cardio-metabolic traits and question the proposed 
cardio-protective effect of general vitamin B 
supplementation [262, 263]. 

 

The	 future	 of	 sequencing	 in	 complex	
metabolic	disease	
The two papers included in this section of the 
dissertation [5, 6] both takes their starting point in an 
exome sequencing of 2000 Danes. From our study and 
from later published and emerging studies, it is clear 
that the effect sizes inflicted by most disease-associated 
rare and low-frequency variants are rather low 
although there are a few exceptions [47, 137, 142, 170, 
211, 216, 230]. The consequence of this is clearly that 
more samples are needed to pinpoint rare variants in 
T2D and other complex diseases [198]. While genome 

imputation from array genotyping has improved by 
application of large reference panels, such as Haplotype 
Reference Consortium [63] or UK10K [62] or the 
coming TOPMed reference panel 
(https://www.nhlbiwgs.org/), a lower limit on MAF 
still exists. This brings forward the need for sequencing 
in large populations to capture the range of range 
variants, which continues to be an important task, since 
rare susceptibility or protective variants, as exemplified 
by the genes mentioned above, point directly to biology, 
targets for novel drugs and potentially as tools in 
precision medicine.  

In the future, collaboration and big resources are 
needed to obtain thousands of samples, which are 
needed to obtain statistical power. A number of large 
projects are generating such data and collaboration 
across different projects is increasingly taking place. 
Some of these initiatives will be driven by national scale 
initiatives. In UK, the “Genomics England” sequencing 
initiative has the ambition to perform whole-genome 
sequencing of 100,000 individuals. Other initiatives are 
driven by the private sector, for instance, Regeneron 
aims to whole-exome sequence the entire 500,000 
individuals of the UK Biobank. As well as sequencing 
large populations of European ancestry, it is also 
important to apply sequencing to more diverse 
populations. This topic will be discussed in more detail 
in Part 5.  
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PART	4.	METABOLIC	GENOME	RESEARCH	IN	ISOLATED	POPULATIONS	
 

The great majority of genomic research within T2D and 
metabolism has been performed in the European 
population. As described, major GWAS meta-analyses 
have been performed in this population leading to the 
identification of hundreds of genomic loci [47, 76]. 
GWAS have also been performed in other large 
populations such as the South Asian and East Asian 
population [222, 264, 265]. In general, the genetic 
heterogeneity between these populations in relation to 
T2D risk is relatively low showing that the effect of lead 
SNPs from European GWAS are transferable to other 
large populations in spite of allele frequencies being 
very different [266]. Nevertheless, other populations 
than the European population are important for 
studying T2D and metabolic genetic risk factors partly 
since differences in LD between populations can help 
defining causal variants for each locus across 
populations [46]. Furthermore, other populations may 
also harbour unique genetic variation, which brings 
people at risk of disease. These variations are often rare 
or absent in the large European population or only put 
people at risk in specific given combination of genetics 
and environment. On the other extreme than large, 
open populations as the European are isolated 
populations. Isolated populations are living in limited 
geographical regions separated from other populations 
and inhabitants therefore share environment to a much 
larger extent than inhabitants in large outbred 
populations, such as the European population. At the 
same time, diseases as T2D are more likely to have a 
specific genetic aetiology in an isolated population 
[267]. One such isolated population is the Inuit 
population living in Greenland. 

 

Genomic	 characteristics	 of	 isolated	
populations	–	what	are	the	implications	for	
genetic	association	studies?	
Different isolated populations have many features in 
common even though the extent of the implications of 
being an isolated population depends on depth of the 
genetic bottleneck, length of isolated period, specific 
environmental factor and other factors. The current 

description is based on the historically isolated 
population of Greenland, which is the basis of papers 7-
9. Due to its inhospitable environment, Greenland was 
one of the last areas on Earth to be populated and today 
remains one of the least populated countries in the 
World with a population of less than 60,000 individuals. 
Historically, Artic people have populated Greenland for 
thousands of years but the current Inuit population has 
lived less than 1000 years in Greenland [268, 269]. The 
Inuit people has lived isolated in the Arctic for 
thousands of years and migrated to Greenland from the 
northern part of Canada [268, 270]. Historically the 
Inuit population has been small and living in isolation 
and during these many years the Inuit people has 
adapted culturally and genetically to the extreme 
environmental conditions of the Northern Arctic. 
Starting with the arrival of the priest Hans Egede in 
1721, Europeans have entered Greenland, which has 
led to genetic admixture. Studies of the modern 
Greenlander has shown an average proportion of 
European ancestry of 25% and that 80% have some 
degree of European genetic ancestry [270]. The degree 
of European ancestry varies a lot across Greenland and 
is by far less in the isolated areas in the north and east 
and in the small villages in the south of Greenland [270] 
(Fig. 14).  

Historically isolated populations, such as the 
Greenlandic Inuit population, have several distinct 
genomic characteristics, which have implications for 
their use in genetic disease mapping. First, LD is 
generally much higher in Greenlanders than in the 
European population or other large populations, 
although the recent European admixture in Greenland 
has reduced the LD significantly compared to the 
ancestral Inuit population [270]. This feature makes 
indirect association mapping, which is the principle of 
GWAS, more efficient, since each genotyped marker 
tags variation in a larger genomic region. Second, the 
Greenlandic individuals have less genetic variability 
than found in larger open populations. Especially they 
have fewer rare variants than seen in large population 
changing the frequency spectrum of this population 
towards more common variants [270]. 
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Figure	 14.	 Estimated	 admixture	 proportions	 for	
individuals	 from	 different	 locations	 in	 Greenland	 and	
sampling	 locations	 in	 Greenland.	Modified from ref. [270] 
where more details can be found. 
	

The reasons for this are the founder effect – i.e. loss of 
genetic variation that occurs when a new population is 
established by a very small number of individuals – and 
the increased power of genetic drift caused by a long-
standing isolation and small population size. Hence 
disease-causing variants, if not absent in Inuit, will have 
a higher probability of being common, which leads to 
increased statistical power to be detected by 
association mapping. As such, the history of the 
Greenlandic population provides several advantages in 
genetic association studies, which are to some extent 
shared with other isolated populations [271]. Yet, the 
strength of these features vary according to local factors 
such as the length and degree of isolation, the depth of 

the founder effect and the local environmental 
circumstances. However, the Inuit population is 
different from well-studied founder populations, such 
as the Finnish and the Icelandic populations, since it is 
not genetically close to any large population. Estimated 
by Fst, which is a commonly used measure for 
population differentiation, the European population 
and the Han Chinese population are genetically closer 
than the Greenlandic Inuit population and one of its 
genetically closest related large populations, the Han 
Chinese population [270]. A major reason for this is that 
the Inuit population has been small and isolated in the 
Northern Arctic for a much longer period than most 
other isolated populations. 
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Diabetes	 and	 obesity	 in	 the	 Greenlandic	
population	

Although T2D prevalence is generally high and 
increasing worldwide, some specific populations and 
ancestry groups have different occurrences of T2D 
[272]. The classic example is the Pima Indian 
population in Arizona. This population has one of the 
highest prevalence of T2D, which has increased during 
a transition from a traditional lifestyle with limited food 
supply and high physical activity to a modern 
Westernised lifestyle. Their diabetes is characterised by 
features of the metabolic syndrome, i.e. obesity, insulin 
resistance and dyslipidaemia [273, 274]. In the 
Greenlandic population, the prevalence of T2D defined 
by World Health Organization 1999 criteria [275] has 
increased dramatically. In the early 1960-ties, a survey 
of the Greenlandic population was performed and 
found almost no cases of diabetes [276]. In contrast, the 
latest population surveys conducted in 1999-2010 have 
shown a prevalence of more than 10% [277, 278]. The 
prevalence of T2D is on the same level as in India and 
twice as high as in Denmark [10]. Obesity is the most 
important risk factor for diabetes and the prevalence of 
obesity, mostly abdominal obesity, is high among the 
Inuit population of the Arctic region [279] and has been 
increasing since the 1960-ties  [280, 281]. Several 
studies have shown that the obesity-dependent risk of 
metabolic disease and complications is lower than in 
the European and other populations [279, 282, 283]. 
Furthermore, a study has indicated that Greenlanders 
have more subcutaneous fat tissue than Europeans for 
any given waist circumference, possibly partly 
explaining the lower cardiovascular risk associated 
with obesity in Greenlanders [284]. Importantly, the 
rapid societal changes likely play an important role in 
changing lifestyle and risk of obesity and T2D. Of 
interest, the prevalence of T2D in Greenland has been 
found to be higher in rural than in urban areas [285], 
which is in contrast to most other populations, where 
urbanization is a risk factor for T2D. In addition, the 
association between dietary intake and risk of T2D is 
also different than expected since a study has found 
higher risk in Greenlanders eating a traditional Inuit 
diet with a high content of marine mammals and fish 
[286]. The traditional way of living in Greenlandic is 
physically demanding. However, this has changed with 

the general change in lifestyle towards people being 
less physically active both at work and in their way of 
transportation. In data measuring physical activity by 
movement and heart monitoring, level of physical 
activity was not associated with T2D, but with 
estimates of peripheral insulin sensitivity, which is a 
risk marker of diabetes development [287]. Changes in 
traditional lifestyle risk factors therefore do not seem to 
explain the high T2D prevalence, although confounding 
by admixture may partly have influenced the results of 
these studies. 

Genetic risk factors may cause some of the high risk of 
T2D in the Greenlandic population and may possibly 
explain some of the epidemiological findings. The 
ambition of the research in the Greenlandic Inuit 
historically isolated population included in this 
dissertation was to map genetic risk elements related to 
T2D and metabolism. The investigations presented in 
papers 7-9 were performed in up to 5,000 adults 
sampled as part of the two health surveys of the 
Greenlandic population, B99 and IHIT and from a 
cohort of Greenlanders living in Denmark [277, 278]. In 
these population surveys, T2D-related phenotypes 
were collected, including data from an OGTT in all 
individuals above 30 years of age in the two 
investigations performed in Greenland. This sample 
represents up to ~10% of the adult Greenlandic 
population and was sampled from all parts of Greenland 
(Fig. 14).  

 

The	TBC1D4	p.Arg684Ter	nonsense	variant	
imposes	 a	 high	 impact	 on	 type	 2	 diabetes	
and	insulin	resistance	

In paper 7, we described our initial genetic association 
analysis in the Greenlandic population [7]. We 
performed a genetic association study of variation on 
the MetaboChip [288] in relation to fasting and 2 hr 
plasma glucose and serum insulin during an OGTT. Here 
we discovered an intronic variant in TBC1D4, which 
was associated with plasma glucose and serum insulin 
2 hr after an oral glucose load. By exome sequencing in 
a small subset of the population, we found a 
p.Arg684Ter nonsense variant in TBC1D4.  
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This variant was likely to be the causal variant and it 
mainly has a recessive genetic effect (Fig. 15). 
Approximately 4% of the Greenlanders are 
homozygous carriers of p.Arg684Ter. On average, these 
individuals had 3.8 mmol/L higher 2-hr plasma glucose, 
160 pmol/L higher 2-hr serum insulin during the OGTT, 
a 1 SD decreased insulin sensitivity and much higher 
risk of T2D (OR 10.3) as compared to the rest of the 
population (Fig. 15) and of interest, 88% of the 
homozygous carriers above 60 years have T2D. These 
effect sizes are 10- to 50-fold higher than reported for 
common variants on these traits in the European 
populations [46, 47, 87, 89]. Interestingly, homozygous 
carriers had the same level of obesity and circulating 
lipids as the rest of the population, supporting the very 
specific nature of this T2D subtype. The TBC1D4 
p.Arg684Ter nonsense variant is located in the long 
isoform of TBC1D4, which is not expressed in 
homozygous carriers of the variant (Fig. 15). 	

The findings from paper 7 were subsequently 
corroborated in a study of 1141 Inuit from Nunavit, 
Canada and Alaska, which were investigated by an 
OGTT [289]. Of interest, the TBC1D4 p.Arg684Ter 

variant was present at comparable frequency in these 
populations indicating a presence throughout the North 
American Arctic Inuit populations. 

TBC1D4 encodes a protein that acts as a mediator of 
insulin-stimulated cellular glucose uptake through 
increasing GLUT4 translocation [290]. Tbc1d4 -/- 
knockout mice have decreased plasma glucose levels, 
have lower GLUT4 levels and have decreased insulin-
stimulated glucose uptake in muscle and adipose tissue 
compared to wild-type mice [291, 292]. TBC1D4 may 
also play a role in the insulin sensitising effects of 
exercise [293, 294]. Subsequent research points to that 
the effect of TBC1D4 p.Arg684Ter on 2-hr plasma 
glucose levels may be modified by the level of physical 
activity of the individual such that very physically active 
homozygous carriers have a smaller genetic effect on 2-
hr plasma glucose [295]. This finding indicates that 
variant carriers would benefit from more specific 
intervention with physical activity to avoid T2D. In 
addition, these results point to TBC1D4-independent 
mechanisms between physical activity and glucose 
uptake.  

	

Figure	15.	Effect	of	the	p.Arg684Ter	variant	in	TBC1D4.	a, Regional association 
with 2-hr plasma glucose levels. b, The mean 2-hr plasma glucose and the frequency 
of T2D for three genotype groups. c, The two predominant isoforms of TBC1D4 
illustrating which exons are transcribed. d, The mRNA expression level of the long 
TBC1D4 isoform in skeletal muscle from nine Greenlandic individuals. e, TBC1D4 
protein long isoform in skeletal muscle from nine individuals. From paper [7]. 
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Taken together, our findings therefore suggest that 
TBC1D4 p.Arg684Ter in homozygous carriers imposes 
a reduced insulin stimulated translocation of GLUT4 to 
the cell membranes of skeletal muscle, which leads to 
post-prandial hyperinsulinemia and hyperglycaemia 
(Fig. 16). As such, the variant causes isolated peripheral 
insulin resistance, which leads to T2D. Constitutive 
recycling of GLUT4 causing an elevated level of GLUT4 
in the muscle cell membrane in the fasting state is 
probably responsible for the decreased fasting levels of 
glucose and insulin observed in homozygous carriers.  

Common T2D is characterised by pathophysiologic 
defects of multiple organs, each contributing to the 
overt disease. However, homozygous carriers of the 
identified TBC1D4 nonsense variant, have a specific 
subtype of T2D with what seems to be a tissue-specific 
molecular defect. Homozygous TBC1D4 p.Arg684Ter 
carriers are almost exclusively diagnosed with T2D due 
to elevated 2-hr plasma glucose levels (Fig. 17) 
underlining the specific nature of the inflicted T2D 
subtype.  

The finding of a genetically induced T2D subtype has 
several implications. First, the single molecular defect 
in patients with this T2D subtype opens for detailed 
studies of biological and physiological mechanisms in 
humans. Such studies will shed new light on 
mechanisms between a dysfunction of TBC1D4, insulin 
resistance and T2D. Second, epidemiological 
investigations of the long-term risks associated with 
this variant will help to elucidate the risk associated 
with isolated postprandial hyperglycaemia. As such, the 
TBC1D4 variant will work in a Mendelian 
randomisation framework to shed light on the causal 
relationship between hyperglycaemia and endpoints 
such as T2D complications including cardiovascular 
disease. As opposed to most Mendelian randomisation 

studies, studies involving TBC1D4 will have the 
advantage that the functional implications of the 
TBC1D4 variant are rather clear. For instance, T2D is 
known to impose risk of cardiovascular disease and it 
has been disputed whether fasting plasma glucose 
levels, 2-hr OGTT plasma glucose or HbA1C levels are 
better at predicting risk of CVD [297-299]. Yet, although 
the variant imposes a strong effect on glycaemia and 
T2D, the low number of homozygous carriers with 
incident CVD may impede statistical power of such 
analyses. Third, defining a subtype of T2D may have 
future implications for treatment and prognosis of T2D 
in this subgroup, although the specific implications and 
evidence is still not available. For instance, it seems 
logical that TBC1D4 variant carriers would not benefit 
from treatment with exogenous insulin since they have 
a high endogenous insulin production.  

 

Figure	17.	The	fasting	and	2-hr	plasma	glucose	levels	of	
individuals	 with	 T2D	 in	 the	 Greenlandic	 cohorts	
stratified	on	TBC1D4	p.Arg684Ter	genotype.	From ref. 
[271]. 
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Figure	16.	Simplified	model	of	the	role	of	
TBC1D4	 in	 insulin-stimulated	 glucose	
uptake	 in	 the	 skeletal	 muscle	 and	 the	
defect	 caused	 by	 the	 TBC1D4	
p.Arg684Ter	variant. From ref. [296] with 
permission. 
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Is	 the	 high	 effect	 size	 of	 TBC1D4	 due	 to	
genetic	drift	or	positive	selection?	

The high effect on 2-hr plasma glucose, 2-hr serum 
insulin, insulin sensitivity and T2D of the variant in 
TBC1D4, calls for considerations on why the variant has 
a frequency as high as ~17% in the Greenlandic 
population. In fact, the MAF in the ancestral Inuit part is 
estimated to be 23% and it is present at comparable 
frequency in other populations in the Northern Artic 
[289]. In contrast, in ~123,000 individuals in data from 
the gnomAD browser, the variant was only found in the 
heterozygous form in two European individuals 
(http://gnomad.broadinstitute.org/variant/13-
75898521-G-A). Several possible explanations for how 
the variant can have reached such high frequency in an 
isolated population, which has been through a genetic 
bottleneck. First, it is possible that the reason is random 
genetic drift, which in small populations like the 
Greenlandic Inuit population, has a strong impact on 
allele frequencies [300, 301]. Genetic drift is the 
random fluctuation of allele frequencies and in large 
populations, where detrimental variants are efficiently 
removed by selection. However, in small populations, 
selection is less effective and harmful variants may 
increase in frequency. As described, few variants 
segregate at low frequency in this population as 
variants are either lost or driven to high frequency due 
to the forces of genetic drift [270]. Alternatively, forces 
of positive selection favouring the alternative allele may 
be the reason behind the high frequency. This could be 
interpreted as the TBC1D4 p.Arg684Ter variant 
previously was associated with a beneficial effect in the 
context of the traditional Inuit diet with a low intake 
carbohydrate [302]. Even though, in the modern 
Greenlandic society, it poses a high risk of T2D, this may 
be a relatively new feature. In paper 7, we presented 
suggestive evidence that this is actually the case by 
showing decreased variability at this locus; however, 
future studies of selection and of interaction between 
genotype and diet may shed further light on this 
interesting question. In fact, a specific combination of 
certain circumstances may be needed for such a variant 
to impose the effect we measure with the detailed 
OGTT-based phenotypes in the current data. These 
specific factors, which may all be necessary for 
expression of the phenotype, are homozygosity for the 
genetic variant, consuming a diet with a certain level of 
carbohydrate content and not being extremely 
physically active. At least theoretically, if any of these 
factors is removed, the phenotype will not manifest 
itself.  

Applying	 a	 recessive	 genetic	 model	 to	
discover	 additional	 type	 2	 diabetes	 risk	
variants	
The risk variant identified in TBC1D4 was found by an 
additive genetic analysis although it proved to have the 
major effect in homozygous variant carriers under a 
recessive genetic model. This prompted us to repeat the 
genetic association analysis of T2D across all data and 
cohorts applying a recessive genetic model. As 
described in paper 8, the recessive model has a clearly 
improved statistical power over the additive model to 
detect a variant, which is genuinely imposing a 
recessive effect. The renewed analysis showed three 
loci which were associated with T2D at Bonferroni 
corrected study-wide significance level. These loci were 
the previously identified TBC1D4	 and the novel loci 
ITGA1 and LARGE1. Of these, the variant in LARGE1 did 
not reach genome-wide significance and while we 
sought replication in both Yup’ik Inuit individuals and 
in Danish samples, we were unable to validate this 
association further. This fact illustrates one of the 
difficulties, when performing genetic association 
studies in isolated populations such as the historically 
isolated Greenlandic population namely that the 
availability of cohorts and samples for studies and for 
replication is limited. This is of course the consequence 
of the small population size of the Arctic region and the 
absence of the specific genetic variants of interest in 
other larger populations.  

The most convincing novel locus from this study was 
the ITGA1 locus on chromosome 5. Of interest, the 
previously described recent GWAS of T2D identified 
three independent variants in this locus each with a 
distinct impact on risk of T2D [47]. However, none of 
these variants were the same as the Greenlandic lead 
variant and LD between variants is low in European 
population (all r2<0.15). Furthermore, the variants 
identified in the GWAS were found applying an additive 
genetic model. For both populations, the causal variants 
responsible for the association signals have not been 
identified making comparisons difficult. This locus 
serves as an example on the complexity of some 
genomic regions. Future data in the Greenlandic 
population with a higher genomic resolution and 
recessive genetic analyses of European data may serve 
to shed light on the multiple signals of the region.   
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Characterising	homozygous	loss-of-function	
variants	in	humans		
In studies presented in papers 7 and 8, we studied 
variants for which the major impact is inflicted in 
homozygous carriers. For the TBC1D4 locus, we were 
able to pinpoint a causal variant, which was a variant 
leading to a loss-of-function of TBC1D4. Such 
homozygous loss-of-function variants are of special 
interest since they can be shortcuts to study human 
biology related to specific proteins. Investigating 
homozygous gene knockout model animals has been a 
key procedure in understanding the biological role of 
specific genes and hence proteins in health and disease 
including T2D [303]. This is still a necessary and 
important tool, yet differences between mice and men 
can interrupt the biological translation, limiting the 
translational influence of such models. Hence, there is a 
great interest both in academic science and from the 
pharmaceutical industry in identifying and 
characterising large sets of humans with homozygous 
loss-of-function alleles. Naturally occurring human 
genetic variants provide “experiments of nature” that 
can directly inform on the function of human genes. In 
addition to providing novel insight into human biology, 
they can aid in the identification and validation of genes 
that would be efficient and well-tolerated targets for 
therapeutic modification in both rare and common 
diseases. In light of this, finding humans with 
homozygous loss-of-function variants is very valuable, 
because detailed physiological investigations of such 
individuals can shed light on gene functions in humans 
potentially paving the way for novel drug discoveries 
for human diseases [304]. 

While identification of homozygous loss-of-function 
variant carriers is the goal, there are different ways to 
get there. Ongoing large-scale whole genome and whole 
exome sequencing of European individuals will reveal a 
high number of loss-of-function variants, however most 
of these possibly disruptive alleles are rare in 
Europeans [305], making investigations of homozygous 
human loss-of-function mutation carriers particularly 
challenging. As an example, 40,000 individuals will 
have to be investigated to identify one homozygous 
carrier of a loss-of-function allele that is carried by 1% 
of the population (MAF ~0.5%) and as the frequency of 
the loss-of-function allele drops, the required sample 
size to identify homozygous carriers increases 
exponentially. Investigation of heterozygous loss-of-
function variants may be of high interest as well, as 
shown numerous times for instance in the described 
study of rare variation in SLC30A8 in relation to T2D 

[211], however it adds complexity to the biological 
interpretation. A number of different initiatives are 
pursuing this approach. For instance, the DiscovEHR 
study, which is a private collaboration between 
Regeneron Genetics Center and Geisinger Health 
System, have applied large-scale exome-sequencing to 
discover loss-of-function alleles, which could be 
potential drug targets in T2D and CVD leading to several 
important findings [236, 306, 307]. Furthermore, two 
recent studies used data from the UK Biobank to 
evaluate the impact of loss-of-function variants across 
the genome on complex phenotypes. In these studies of 
between 337,000 and 406,000 individuals, a number of 
associations between rare or low-frequency loss-of-
function variants in the heterozygous state and complex 
phenotypes were found [308, 309]. Examples of these 
are an association between rare GPR151 variants and 
protection from obesity and T2D and between rare 
variants in PDE3B and elevated height, improved body 
fat distribution and protection from coronary artery 
disease [309]. However, the evaluation of loss-of-
function variants in the homozygous state was mostly 
limited to very common variants such as rs601338 at 
FUT2.  

Alternative ways to address this issue relate to specific 
populations with characteristics leading to changes in 
the genomic constitution. First, as described it is 
possible to use isolated populations, where the founder 
effects and genetic drift can make homozygous loss-of-
function carriers more frequent [310]. This means that 
under a recessive model, the magnitude of the 
bottleneck and the level of isolation will determine the 
extent of the increase in homozygous genotypes. A 
study of rare homozygous loss-of-function carriers in 
the Icelandic population showed that 7.7% of 
genotyped individuals from the Icelandic population 
are homozygote or compound heterozygote carriers of 
loss-of-function variants with a MAF below 2% together 
covering more than 1000 genes [311]. In addition, 
studies of Finns have shown more homozygous low-
frequency loss-of-function variants than in non-Finnish 
Europeans [312]. Given the length and depth of the 
genetic bottleneck in the formation of the present-day 
Inuit population [313], it is expected that the 
frequencies of such variants will be even higher in the 
Greenlandic population. Studies of the Greenlandic 
Inuit population have shown that this special 
population carries fewer deleterious variants but that 
these segregate at higher frequency than in other 
populations [314]. Furthermore, Greenlandic Inuit have 
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a higher genetic load compared to other populations 
[314]. 

Another option for studying homozygous loss-of-
function variants to infer human biology and evaluate 
potential drug targets, relates to the special features of 
populations such as the Pakistani population or specific 
populations in the Middle East. Here, the marital 
traditions result in a population with a higher rate of 
consanguinity, resulting in increased frequencies of 
homozygous loss-of-function mutations. A recent paper 
used data from a cohort of 10,503 individuals from 
Pakistan with a high rate of consanguinity to identify a 
number of interesting associations between 
homozygosity at specific genes and complex 
phenotypes such as an association between NRG4 and 
reduced fasting plasma insulin and C-peptide 
concentrations. Furthermore, homozygous carriers of 
loss-of-function variants in APOC3 were identified 
strengthening and validating the association between 
APOC3 and levels of triglycerides [315]. These findings 
in a relatively low sample size show the power of this 
approach.  

 

The	ADCY3	locus	–	revealing	novel	biology	in	
obesity	pathogenesis	
As described, the historically isolated Greenlandic Inuit 
population holds increased numbers of loss-of-function 
variants, which are not rare. Hence, a logical next step 
was to look specifically for loss-of-function variants, 
which segregates at sufficiently high frequency to 

enable the study of homozygous carriers.  In the study 
presented in paper 9, we therefore used the exome 
sequencing data of 27 individuals generated previously 
[7], to detect common putative loss-of-function variants 
across the exome. To narrow the search, we intersected 
the identified variations with genes at known GWAS 
loci, since there is an increased chance that such genes 
harbour loss-of-function variants with a stronger 
impact on phenotype. The sole variant to emerge from 
this investigation was a splice variant in ADCY3, a locus 
previously associated with BMI in GWAS [316, 317]. In 
paper 9, we describe the relationship between this 
variant, c.2433–1G> A, which has a MAF of 2.3% in the 
Greenlandic cohorts, with metabolic phenotypes in the 
Greenlandic samples.  

We show that the variant is associated with obesity, 
obesity-related phenotypes, glycaemia and T2D with 
the largest effect in a recessive genetic model. The seven 
homozygous carriers had 7.3 kg/m2 higher BMI, 8.1% 
higher fat percentage and higher risk of T2D. To show 
that this variant actually results in loss of functional 
ADCY3, we performed RNA sequencing of blood cells in 
17 individuals to display the aberrant splicing patterns 
caused by the variant. Here we showed that the variant 
results in two additional splicing patterns characterized 
by intron retention or skipping of exon 14 (Fig. 18). 
Thus, this mutation might impair the function of ADCY3 
through shifting the expression of mRNA isoforms. 
However, we did not measure protein levels in a 
relevant tissue and it is thus unknown whether this 
variant modulates the structural conformation of the 
ADCY3 protein.  

Figure	18.	ADCY3	isoforms,	observed	
loss-of-function	 variants	 and	
functional	 consequences	 based	 on	
RNA. a, Illustration of ADCY3 displaying 
the three relevant transcript isoforms 
with their predicted functional 
consequences. b, Normalized ADCY3 
expression, stratified according to 
ADCY3 c.2433–1G> A variant genotype. 
c, ADCY3 transcript isoform fractions 
stratified according to ADCY3 c.2433–
1G> A variant genotype. From paper 9. 
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Of interest, our discovery of the splice variant in ADCY3 
was published in the same issue of Nature Genetics as 
another study finding a relationship between variation 
in ADCY3 and obesity [318]. Saeed et al. investigated 
severely obese probands from consanguineous families 
from Pakistan by exome sequencing and found three 
homozygous or compound heterozygous, potential 
causative variants in ADCY3 including a frameshift 
variant, a splice site variant and a missense variant 
[318]. The three variants were functionally 
characterised and shown to be loss-of-function variants 
that affect the catalytic activity of the encoded protein. 
As such, these findings corroborate our findings from 
the Greenlandic population and firmly establish ADCY3 
as the causative gene of this locus in obesity. At the 
same time, the two studies illustrate different 
approaches by which to arrive at homozygous loss-of-
function variants associated with extreme phenotypes 
(Fig. 19).  

  

Figure	 19.	 Novel	ADCY3	 mutations	 [9,	 318]	 and	 their	
possible	 functional	 consequences.	 Modified from ref. 
[319] with permission.	

 

ADCY3 catalyses the synthesis of cyclic AMP (cAMP) 
from ATP. Studies of mice have associated loss of ADCY3 
function with impaired insulin sensitivity, 
dyslipidaemia, obesity and increased fat mass, 
hyperphagia, depression-like phenotypes and 
resistance to leptin [320-323]. Possibly, leptin 
resistance occurs through disrupted cAMP signalling in 
primary cilia in hypothalamus [322]. Interestingly, 
previously described syndromic forms of obesity, 
including Bardet–Biedl and Alström syndromes, have 
been found to be caused by altered function of primary 
cilia [324]. Along those lines, a study demonstrating 

that the MC4R-ADCY3 pathway in neuronal primary 
cilia is involved in monogenic obesity [325] was 
published back to back with the two genetic association 
papers [9, 318]. Interestingly, MC4R and ADCY3 were 
specifically co-localized in the primary cilia of a subset 
of neurons in the paraventricular nucleus of the 
hypothalamus. Furthermore, obesity-associated MC4R 
mutations impaired ciliary localization and specific 
inhibition of ADCY3 activity at primary cilia of MC4R-
expressing neurons was sufficient to cause obesity in 
mice. These findings confirm the essential role of MC4R 
and ADCY3 at primary neuronal cilia in regulating body 
weight [325]. Together, these studies highlight a causal 
role of ADCY3 and provide new genetic associations and 
mechanistic insights in the aetiology of obesity and 
T2D. In conclusion, these recent studies reinforce a 
rationale for pursuing ADCY3 as an attractive 
therapeutic target for obesity and obesity-associated 
disorders. 

 

Future	 research	 in	 the	 historically	 isolated	
population	such	as	the	Greenlandic	Inuit	
From initial studies of Greenlandic Inuit, it is evident 
that this is a fruitful avenue for identification of 
important variants and genes with biological impact on 
T2D and metabolic disease. Some of the reasons for this 
is connected to the specific genomic context of this 
population, as described earlier. Especially in the cases 
where we have been able to pinpoint causal variants as 
shown for TBC1D4 and ADCY3 make biological 
translation from association to disease mechanisms 
more straightforward than what is the experience from 
GWAS of the European population. While studies of 
isolated populations, like the Greenlandic Inuit, 
evidently have a number of advantages, there are also 
some limitations. First, collection of samples from a 
small population living spread over a large area in 
places hard to reach, is very difficult and with a small 
population, the sample size of a cohort will naturally be 
limited. Second, replication of findings from 
Greenlandic cohorts is difficult as evident by the study 
presented in paper 8. Sources of cohorts with similar 
characteristics are very limited. 

The findings from Greenlandic Inuit presented in the 
current dissertation are based on what in a modern age 
of genomics seems as rather limited datasets consisting 
of MetaboChip [288] data for all individuals and exome 
sequencing data in 27 individuals and RNA sequencing 
in 17 individuals. More and deeper omics-data will 
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likely reveal more findings and we are currently 
generating extensive genomic data, including genome-
wide array genotyping combined with whole-genome 
and RNA sequencing in a subset, in the Greenlandic 
population to evaluate the potential in more detail and 
to discover additional individuals with functionally 
disrupted genes. A putative approach is to re-examine 
such individuals and families by recall-by-genotype 

principles and perform physiological evaluation with 
statistical confidence, although such an approach poses 
practical challenges related to geography. Furthermore, 
given the high-impact genetic variants found in 
Greenlanders, it is likely that research in this population 
will serve as a forerunner for clinically translation of 
genetic findings.  
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PART	5.	PERSPECTIVES	ON	GENOMIC	DISCOVERIES	IN	TYPE	2	DIABETES	–	WHAT	IS	MISSING	AND	
WHAT	MAY	THE	FUTURE	HOLD?	
 

The	genetic	architecture	of	 type	2	diabetes	
and	complex	metabolic	phenotypes	
The term genetic architecture in human genetics 
describes the characteristics of genetic variation that 
are responsible for the heritability of certain 
phenotypes [326], i.e. the complete understanding of all 
genetic contributions to a phenotype or disease and 
includes the number, effect size, allele frequency of 
variants and the possible interactions between the 
variants, or between variants and environmental 
factors. Within metabolic complex traits, the shape of 
the genetic architecture has been discussed for years. 
The last decade of research has shed light on specific 
elements in this composition and a more detailed 
picture across the allele frequency spectrum of genetic 
variation is currently emerging. As described, the 
question if the major disease liability is carried by 
common genetic variation or by rare variants unique to 
specific families or individuals has been debated [202, 
204]. With the emergence of large-scale sequencing and 
densely imputation-based studies, we are obtaining 
growing empirical knowledge of the relative 
contribution of these types of variation. The current 
picture in large populations, such as the European, is 
clearly that the major part of the genetic risk of 
metabolic traits as T2D and obesity is explained by 
common genetic variants [47, 92, 97, 98, 216, 266]. 
While specific rare variants have been shown to change 
risk in small subsets of the population [137, 211], these 
variants do not contribute much to the genetic liability 
on the population scale. For instance, in the latest GWAS 
of T2D the identified common variants (MAF>5%, 
n=323) explained 16.3% of phenotypic variance, while 
the identified low frequent and rare variants (MAF<5%, 
n=80) only explained 1.1% of variance [47]. Still, rare 
alleles contributing to risk of T2D and obesity are being 
increasingly revealed with the growing sample sizes in 
studies applying sequencing or densely imputed 
genotyping [67, 142, 216, 241]. Since rare variants with 
higher effect size can provide valuable and rapid 
biological and clinical insights, these findings are of 
huge interest. Another longstanding debate relates to 
the extent of genetic heterogeneity in complex traits 
and to the effect sizes imposed by individual variants. 
The emerging picture for both T2D and BMI shows an 
extremely high degree of genetic heterogeneity with 

hundreds of proven risk variants and indications of the 
existence of many more common variants with low 
impact [46, 47, 76, 92, 95, 97, 98, 216, 266]. 

For risk of T2D and variation in BMI, GWAS have, as 
reviewed in Part 1, identified a plethora of associated 
genetic variation in the European population. The 
relationships between the MAF and effect size inflicted 
on risk of T2D or variation in BMI, respectively, for 
these variants are illustrated in Figure 20. In the 
European population (blue dots), the relationship 
between MAF and effect size lies mainly on hyperbolic 
curves with increasing effect sizes for lower allele 
frequencies. The curves almost co-localise with the 
results of statistical power analysis of study samples of 
100,000 to 150,000 individuals for BMI and T2D, 
respectively (Fig. 20). Above this curve are alleles with 
higher effect size than expected from their frequency; 
however, relatively few of these seem to exist in large 
populations, with the obvious examples being the 
TCF7L2 locus for T2D and the FTO locus for BMI. It is 
expected that many more yet undetected variants lie 
below the curve; however, limitations in statistical 
power currently impede their discovery. 

The genetic architecture of common complex traits 
such as T2D and BMI emerging over the past decade is 
putting empirical data and evidence on years of 
discussions on the genetic model involved in the genetic 
predisposition but producing results from densely 
imputed genotyping and from sequencing-based 
studies. These findings point to a genetic model in 
which a very high number of risk alleles co-exist in a 
complex highly polygenic model (Fig. 20). This is also 
illustrated by findings of a whole genome sequencing 
study of T2D [216]. Both empirical and simulated data 
from this study suggested that low-frequency and rare 
variants contribute much less to T2D heritability than 
do common variants [47, 216]. The observed polygenic 
model is in contrast to earlier theories, which predicted 
a limited number of risk alleles including “major genes” 
with higher effects. However, a paper proposing an 
omnigenic model has recently challenged the polygenic 
model. In the omnigenic model, it is proposed that all 
variants affecting gene expression in disease-relevant 
cells contribute to the genetic susceptibility of a specific 
trait implying that a substantial fraction of all genes 
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contributes to the genetic predisposition to any given 
trait [327]. The omnigenic model would help to explain 
the high complexity of genetic architecture, which is 
currently emerging. Of interest, this model has 
resemblance to the infinitesimal model, which has been 
discussed for more than 100 years. In the infinitesimal 
model, a huge number or potentially all variants, have a 
non-zero but small role in phenotypic variation [328-
331]. Again, these theories mirror recent development 
in studies of polygenic risk scores, which in some 
studies includes more than 6 million variants with non-
zero effects [81]. The omnigenic model distinguishes 
between core genes with a biologically interpretable 
role in disease and other non-core genes; however, any 
gene may be just a few steps from a core gene and hence 
have a tiny but non-zero effect on the outcome. The 
model points to a thus far unseen complexity in the 
genetic architecture of complex traits and opens for 

some fundamental questions. One such question relates 
to the overall ambition of using the genetic mapping to 
gain knowledge on the biology behind specific diseases. 
What are we expected to learn about the specific 
disease biology if thousands of genes are involved in the 
genetic predisposition? Here the ambition may be to 
map and characterise the core genes specifically 
involved in disease. Since the core genes are expected 
to have the largest effects among thousands of genetic 
associations, it also implies that at some lower 
threshold of effect size, further expansion of sample 
sizes to find even smaller effects will not add much to 
the biological understanding. However, also tissue- or 
cell-specific effects and differences in effects through 
different time windows in life will complicate the 
simple distinction between core genes and non-core 
genes and may lead to new important playing fields for 
genetic research. 

Figure	 20.	 Relationship	
between	 minor	 allele	
frequency	and	effect	size	
for	 variants	 associated	
with	a)	T2D	or	b)	BMI	in	
the	European	(blue)	and	
isolated	 (red)	
populations. The 
relationship between MAF 
and effect size resulting in 
80% statistical power is 
shown as the blue line. The 
statistical power analyses 
were based on simulations 
for sample sizes of 50,000 
T2D cases and 100,000 
controls for T2D and 
100,000 individuals for 
quantitative analysis of 
BMI assuming a genome-
wide significance level of 
5×10-8 and a T2D 
prevalence of 8%. 
Association data for 
genetic variants were 
obtained from recent 
GWAS and other relevant 
publications [7-9, 47, 92, 
170, 332-338].	

a	

 

b	
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The genetic architecture may vary between different 
phenotypes [339] (Fig. 20) and it may also be 
substantially different in other populations with 
specific population history and circumstances such as 
an isolated population. This is due the factors, such as 
population size and the influence of selection and 
genetic drift in an isolated population especially when 
living with stronger environmental pressure, as 
described in more detail in Part 4. The emerging picture 
of the genetic architecture of T2D and BMI in isolated 
populations thus appears rather different from in large 
open populations. Here rather common variants with 
frequencies above 1-2% have much stronger effects 
than seen in large populations as the European 
population. Among examples of these specific T2D-
associated variants in isolated populations are the 
variants in TBC1D4, ITGA1 and LARGE1 [7, 8], but 
findings also include a number of variants identified in 
other isolated populations than the Greenlandic Inuit 
population. In the Mexican population, a number of 
studies have identified variants associated with T2D. In 
2014, a missense variant in HNF1A (p.Glu508Lys) 
associated with T2D with an OR of 5 [332]. This variant 
was had a frequency of 2.1% in patients with T2D as 
compared to 0.4% in individuals without diabetes. As 
discussed in the next section, HNF1A is known for being 
the genetic cause of maturity-onset diabetes of the 
young (MODY) 3 and in addition, common variants in 
this locus are associated with common T2D. 
Furthermore, variants in SLC16A11 and IGF2 have been 
associated with T2D in Mexicans [333, 334]. While 
being more common in the Mexican population (MAF 
24% and 19%, respectively), these variants also have 
more modest effect sizes (OR 1.29 and 1.28, 
respectively). Other interesting associations in isolated 
populations include a missense variant in ABCC8 
(p.Arg1420His) in the Pima Indian population (MAF 
3.3%, OR 2.0) [335], a HNF1A missense variant 
(p.Gly319Ser) in the Canadian Oji-Cree population 
[336] and a nonsense deletion in LIPE associated with 
T2D (MAF 5.1%, OR 1.8) in the Older Amish population 
[337]. In Iceland, there is a large agreement with 
associations in Europeans, yet some rarer potentially 
population-specific variants in PDX1, PAM and CCND2 
have also been demonstrated [170].  

Also, for BMI, some specific associations have been 
found in isolated populations; among them, the ADCY3 
loss-of-function [9]. Of interest, a common missense 
variant in CREBRF (p.Arg457Gln, MAF 26%) was 
associated with a 1.4 kg/m2 higher BMI in carriers in a 
Samoan population [338]. For all these described 

variants associated with T2D or BMI in isolated 
populations, it is the case that the identified variant is 
absent or segregating at much lower frequency in large 
populations such as the European or Asian populations. 
Furthermore, for other metabolic traits several findings 
have been done in isolated populations in subsets of the 
Greek population [340, 341] or in Finns [342]. 

 

Bridging	 the	 monogenic	 to	 the	 polygenic	
genetic	 landscape	 of	 type	 2	 diabetes	 in	
specific	hotspot	loci	
In general, the relationship between MAF and effect size 
for T2D-associated alleles (Fig. 20) shows that in a 
European population there is a tight boundary to the 
effect size for any given MAF. It also illustrates the 
emerging overall continuum of effects from very 
common variants via rare alleles segregating in the 
population towards the family-specific variation shown 
to cause monogenic forms of diabetes. In addition, when 
zooming in on specific loci, there are some interesting 
findings showing the continuity of effects at certain loci 
with allelic series of variants associated with diabetes. 

There is a rather large overlap in loci between common 
variants associated with T2D and rare variants 
associated with monogenic diabetes such as maturity-
onset diabetes of the young (MODY) or permanent 
neonatal diabetes mellitus, which goes for the GCK,	
HNF1A, HNF1B,	 HNF4A, PPARG,	 KCNJ11,	 GLIS3	 and	
WFS1	loci [50, 75, 343-351]. This is equally true for a 
number of loci associated both BMI and with 
monogenic subsets of obesity (MC4R,	 POMC,	 LEPR,	
BDNF,	 SH2B1,	 PCSK1 and NTRK2) [91, 92, 316, 352-
357]. Elucidating an allelic series of variants in a locus 
associated with different severity and manifestations of 
the same phenotype can be important for several 
reasons. Finding both rare and common variants 
associated with comparable phenotypes in the same 
gene leads to a solid causal connection between the 
specific gene and disease pathogenesis. Such findings 
may also shed light on the pathophysiological 
connections between aspects of disease processes 
shared by these phenotypes.  

A prime example of such a locus is HNF1A. HNF1A 
encodes a master transcription factor, which regulates 
genes expressed in liver, kidney and pancreas [358, 
359]. Rare family-specific variants in this locus have 
long been known to cause MODY inflicting an insulin 
secretion deficiency [347, 360]. Because of its role in 
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MODY, this gene was an early candidate gene for 
common T2D and a missense variant was in 1999 
associated with T2D in the Canadian Oji-Cree 
population [336] (Fig. 20). The HNF1A locus has since 
been firmly established as an risk locus for common 
T2D in Europeans [75] and in the latest GWAS of T2D, 
six distinct signals were found in the locus with 
p.Gly226Ala (rs56348580) as primary lead variant 
[47]. Furthermore, a rare missense variant in HNF1A 
has been shown to have a high impact on T2D in the 
Mexican population [332]. Several interesting aspects 
of possible clinical value stems from these observations. 
First, generally it is possible to treat patients with 
HNF1A-MODY with sulphonylurea class drugs instead 
of administrating exogenous insulin [361]. This makes 
it extremely important to genetically identify HNF1A-
MODY patients, since they are often clinically 
misclassified. It is currently unknown whether the 
clinical implications observed in HNF1A-MODY 
patients also applies to patients with rare high-impact 
but not fully penetrant variants in HNF1A. A recent 
study of carriers of the HNF1A p.Glu508Lys variant 
found in the Mexican population indicated that clinical 
use of sulfonylureas seen in HNF1A-MODY patients 
does not translate to carriers of this variant [362]. This 
finding indicates that the clinical implications need to 
be proven for each specific class of associated variants 
or potentially for every specific variant, making the 
clinical translation extremely tedious or impossible. 
Another implication of such an allelic series of 
associations for a specific gene is that it highlights the 
importance but also the difficulties in assigning the 
proper molecular diagnosis for variants, which have not 
been intensively studied previously. As most families 
with HNF1A-MODY have family-specific variants, it can 
be extremely difficult to call a variant as disease causing 
in a suspected MODY patient. Here large-scale and 
systematic functional screening of potential mutations 
in important genes, such as previously done for the 
T2D-associated PPARG gene [363], will improve the 
interpretation. However, since functional in vitro 
screening is not a perfect tool, the results will need to 
be interpreted together with other clinical and 
molecular evidence. Building such algorithms for 
prediction of causative effects of specific variants is of 
high clinical importance [364] and is, together with 
increased knowledge on how to clinically care for 
patients with high-impact but non-monogenic variants, 
a major objective for future translational genetic 
research. 

Within obesity, the major example of a gene involved in 
both common forms of obesity and monogenic subsets 
is MC4R. Here coding variants are a relatively frequent 
cause of familiar obesity [365] and common variants 
were associated with BMI in one of the early GWAS [91]. 
Recently, also rare coding missense variants have been 
implicated in variation in BMI at the population level 
showing higher effect than for the common variant [67] 
(Fig. 20).  

 

Precision	 medicine	 in	 type	 2	 diabetes	 –	 a	
future	prospect	or	an	illusion?	
In T2D, there is substantial heterogeneity in the 
response to medical treatment. One of the hopes of 
shedding light on complex trait genetics has been to be 
able to identify subgroups of patients with more similar 
disease pathogenesis and to use such subgrouping to 
direct specific treatments for groups of patients 
achieving higher efficacy and fewer side effects. As such, 
knowing the specific genetic risk factors would pave the 
way for personalised or stratified medicine such that 
prevention, diagnosis, treatment and prognosis would 
be informed by the genetic profile of the individual. 
Lessons from monogenic metabolic disease suggest that 
identification of genetically homogenous groups may 
lead to improvements in treatment of the patient [366]. 
Here genetic diagnosis has changed the clinical care of 
many patients with either permanent neonatal diabetes 
mellitus or MODY. This has for instance led to 
discontinuing of treatment for patients with mutations 
in GCK or change of treatment to drugs of the 
sulphonylurea class in MODY patients with mutations 
in HNF1A and patients with permanent neonatal 
diabetes mellitus with mutations in KCNJ11 or ABCC8 
[349, 360, 366-368]. 

A number of mostly smaller studies have been 
performed seeking to associate common genetic 
variation with specific existing disease treatments in 
T2D, mostly metformin and sulphonylurea but also 
other classes of T2D medication, either by analysing 
validated T2D risk variants or by applying GWAS. As 
reviewed in 2014, there is some evidence for 
pharmacogenetic effects of the commonly used T2D 
treatments on immediate treatment outcome, mostly 
evaluated by the HbA1C levels, but studies of sufficient 
size are lacking [369]. Of interest, in 2016 a GWAS 
investigated genetic variation in relation to response to 
metformin, which is the first-line treatment in T2D, 
measured by HbA1C levels [370]. Here an intron variant 
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of SLC2A2, which encodes the glucose transporter, 
GLUT2, was associated with a 0.17% greater 
metformin-induced reduction in HbA1C in 10,577 
European participants [370]. The clinical impact of this 
association has not yet been fully investigated, but it is 
likely that genotyping results for such a variant in T2D 
patients may in the future be included in individualised 
treatment choice algorithms. This is especially the case 
in a future clinical scenario where full genotype or 
sequence data are available for all patients to inform 
clinical decision-making so that such variants do not 
need to be specifically selected and genotyped. In 
general, findings from pharmacogenetic studies have 
not been as solid as to offer real clinical value at present. 
However, a growing interest for the field of genetics in 
the pharmaceutical industry, an increasing tendency to 
make clinical trial data available for other researchers 
and the advent of large biobanks with register-based 
prescription and outcome information may change this 
within the coming years. From current findings, 
however, it may questionable if such genetic variants 
with a validated pharmacogenetic impact may be 
sufficiently strong to predict outcome of specific 
pharmacological treatment, but may add to prediction 
of effect coming from clinical disease-related data.  

The emerging genetic landscape of T2D and metabolic 
diseases in large populations as the European and in 
isolated populations as the Greenlandic have huge 
consequences for the future prospects for the utility of 
genetic discoveries to improve clinical care of patients. 
In the Greenlandic population, the large effect size of 
identified genetic variants [7-9], may make a shortcut 
to precision medicine as single variants define specific 
subgroups of individuals and patients. The most evident 
case is for homozygous carriers of the TBC1D4 
p.Arg684Ter variant where future studies may well 
bring evidence for specific treatment and prognosis 
prediction in these individuals.  

In large populations such as the European population, 
there is no obvious evidence for subgrouping and 
precision medicine based on genetic risk factors for the 
bulk of T2D patients, but there are several indications 
that genetics may be useful for smaller specific subsets 
of individuals. Such subsets may be patients with 
MODY, which accounts for ~1% of patients with T2D 
[371] or potentially individuals with rare variants with 
higher impact in genes such as HNF1A or SLC30A8, 
which may in due time show to be of clinical 
importance. In the individual, the specific pattern of 
hundreds or more likely thousands of genetic risk 
alleles, acts in concert with environmental exposures to 

determine individual risk of disease. As discussed, 
common genetic variants individually unanimously 
impose modest changes in the risk of T2D and adiposity. 
Although genome-wide evaluation indicates that the 
full set of variants in well-imputed genotype data 
explain a substantial amount of heritability [47, 100, 
199], the high complexity and genetic heterogeneity 
makes genetic prediction of T2D or obesity and 
genotype-specific interventions extremely difficult.  

In the process of determining the specific genetic 
vulnerabilities increasing risk of T2D, important 
lessons are being learnt about the pathogenic 
constitution of the disease. Although subgrouping of 
individuals based on major disease aetiologies is an 
obvious goal in order to achieve clinical translation, the 
genetic risk composition and the complexity seen in 
biological disentangling of these genomic loci, display 
the complexity and heterogeneity of T2D. The 
consequence of this is that it is overly optimistic to 
believe that the disease can be broken into a limited 
number of disease entities for which specific clinical 
management can be installed. Instead, as suggested in a 
recent commentary [372], the pathogenesis in T2D can 
rather be seen as liabilities and defects on a quantitative 
scale related to the major pathophysiological processes 
that contribute to diabetes risk and progression. For a 
minor subgroup of patients, one or few defects will 
dominate the set of liabilities and for such patients 
targeted clinical intervention may be possible. 
However, for the majority of patients, a number of 
parallel liabilities with modest impact on multiple 
disease processes are the root of the disease making the 
pathogenesis highly heterogenic [372]. Identifying and 
specifically targeting the multiple defects and processes 
are huge challenges for reaching precision medicine in 
the bulk of patients with T2D. Hence, it will be natural 
to start the hunt for precision medicine in T2D by 
seeking to identify the smaller subsets of patients with 
rather uniform disease processes. With the outlook of 
genetics, this may be done identifying subsets with high 
impact variants as seen in isolated populations [7] or by 
identifying patients with a combined load of specific 
variants. This combined impact could likely be alleles 
with an impact on insulin secretion, a group of patients 
which is imaginable to be able to target with other 
clinical approaches than the metformin treatment used 
as first line standard drug [373]. In addition, novel 
developments give some hopes to be able to use GWAS-
based findings to get closer to precision medicine in 
T2D. First, the application of polygenic risk scores may, 
as described in Part 1, be clinically applicable to 
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pinpoint subsets at particularly high risk of disease [47, 
77, 81, 374] and future translational studies may depict 
if these individuals will benefit from specific preventive 
initiatives or treatment. Here of special interest is the 
construction of polygenic risk scores for T2D-related 
endophenotypes since individuals at the extreme high 
end of such scores may have a more uniform T2D 
pathogenesis. Second, recent studies applying 
clustering of T2D-associated variants have indicated 
that discrete groups of variants can be formed and that 
up to 30% of T2D patients are in top 10% of the genetic 
risk score based on variants from a single cluster [143]. 
These findings support the use of genetics to 
deconstruct T2D heterogeneity at least in a subset of 
patients with a dominant disease process, as discussed 
above. These findings indicate that classification of 
patients by these genetic pathways may offer a step 
toward genetically informed T2D patient management. 

The ability to individualise treatment based on genetic 
information will likely prove to be a continuum from 
monogenic subsets with highly individualised 
treatment, over genetic identification of 
pathophysiological specific subgroups of patients with 
rare but high-impact variants or accumulation of 
common risk alleles to a large group of highly 
heterogeneous patients in which knowledge of genetic 
profile will not add significantly to clinical care. Yet, 
with the ever-falling costs of genome genotyping and 
sequencing, the future will likely bring a situation 
where all patients have their full genome sequenced 
thereby opening for large-scale and more accurate real-
life studies of genetic impact on treatment outcome in 
different strata of patients.  

To get to precision medicine in the future it seems clear 
that more than genetic data are needed to be taken into 
consideration. A recent study took a step away from the 
omics techniques and used six rather basic clinical and 
biochemical phenotypes and applied clustering 
methods to seek to subgroup newly diagnosed T2D 
patients [375]. These analyses identified five distinct 
subtypes of T2D, which were characterised by certain 
phenotypic features assessed soon after diagnosis and 
possibly representing broad disease-related 
pathophysiological processes. These included early-
onset severe autoimmune diabetes (6.7% of patients), 
severe insulin-deficient diabetes (17.5% of patients), 
severe insulin-resistant diabetes (15.3%), mild obesity-
related diabetes (21.6%) and mild age-related diabetes 
(39.1%). Rates of diabetes-related complications 
differed between the subgroups [375]. While being of 
huge interest, one limitation of this approach resides in 

the use of phenotypic criteria for clustering that are 
ascertained at disease onset and are not necessarily 
generalizable to other stages of disease development. 
This is in contrast to a genetically driven strategy. As 
such, the clinical translation of these findings remains 
unclear; however, the study does provide a 
steppingstone on which to build future subgrouping 
strategies.  

Other emerging sources of data possibly driving future 
T2D subgrouping with the potential to change clinical 
care come from other types of omics data. Such data, for 
instance transcriptomics, proteomics or metabolomics 
data sources, typically lie on the biological pathway 
between genetic markers and clinical phenotypes and 
hence are closer to phenotype. While this may provide 
greater precision to predict phenotype, for instance as 
seen in a recent paper based on data from the 
Framingham study [376], it also leads to more complex 
interpretation as results are related to the specific cells, 
tissues or organs, to time-dependent and context-
dependent effects and to classical epidemiological 
challenges, such as confounding and reverse causation. 
Hence, as for the study by Ahlqvist et al. [375], it 
remains crucially important that findings represent 
reflections of true disease aetiology and are not merely 
different stages in disease progression. Yet, if achieved, 
the challenges may turn to be opportunities since 
offering dynamic tracking of disease progression via 
omics data. 

 

Emerging	 biological	 translation	 of	 genetic	
findings	
As reviewed, research during the past decade has 
revealed a large number of specific genetic variants 
associated with obesity or T2D. An obvious next goal is 
to aim to shed light on the biological mechanism behind 
the associated variants. Here genetics offer the 
possibility to test mechanistic relationship between 
gene variation and human phenotype directly at the 
cellular level. However, in general it has proven very 
difficult to elucidate the paths from associated marker 
to distal phenotype. A number of obstacles are making 
this process extremely cumbersome. First, finding the 
causal variant at a locus will be the first step to find the 
mechanisms where for some loci more than one 
functional variant will exist. However, since most of the 
identified signals map to noncoding regions of the 
genome, the identity of the genes through which they 
operate is often obscure [377]. Even for coding variants, 
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the translation from associated variant to causal variant 
may not be straightforward. Although association of 
rare coding variants may point directly to the causal 
variant and the causal transcript, yet, as discussed in 
Part 3, even for common coding variants it may not be 
straightforward to assign the functional variant. 
However, for predicted loss-of-function variants, as 
identified in papers 7 and 9, the evidence for functional 
variants and genes may be much easier to obtain.  

Identifying the causal variant and the effector transcript 
in a locus is thus a quite huge task. At some loci, an 
obvious biological candidate will be present, but for 
most loci, this will not be the case. Non-coding disease-
associated variants may affect gene expression through 
effects on transcription, splicing, or mRNA stability 
[378]. Statistical fine-mapping and genomics 
integration with publicly available functional genomics 
data, such as ENCODE or Roadmap Epigenomics data 
[379, 380], to investigate eQTLs in relevant tissues 
[381], chromatin accessibility or transcription factor 
binding, may help defining causal variants and 
transcripts [382, 383]. Even when a causative gene has 
been identified for a locus, there are still issues in 
functionally connecting the causal gene with the distal 
phenotype. Novel high-throughput techniques, such as 
4C, HiC and ATAC-seq that can map chromatin 
interactions and accessibility [384], together with 
technologies, such as CRISPR-Cas9 genome editing 
tools [385] and single-cell RNA sequencing studies of 
how RNA expression differs between cells within 
tissues [386], provide drastically changed 
opportunities for disentangling the molecular 
functional impact of GWAS-identified genes.  

 

Metabolic	genetics	in	drug	development		
Another perspective of performing research into the 
specific genetic contribution to the risk of diseases as 
T2D is that these genetic discoveries will shed light on 
novel biological targets that can be manipulated to 
serve as future drug targets to treat the disease. The 
pharmaceutical industry is struggling to keep up 
efficiency in discovering and evaluating drug targets 
and the average cost of novel compounds is increasing 
[387]. Here genetic research can bring a validation of 
targets from discovery of previously unknown potential 
targets in the disease and by genetic association 
evaluate efficacy, pleiotropy and possible side effects. 
The identification and validation of novel drug targets 
is a major stated objective of genetic studies of T2D and 

obesity. It has been estimated that drug mechanisms 
with genetic support can succeed twice as often in the 
clinic as those without such support [388]. Increasing 
developmental success rates will result in fewer drug 
candidate failures for each successful drug and thereby 
a more cost-effective drug development pipeline. Even 
relatively modest improvements in success rates 
achieved through better target and indication selection 
based on genetic evidence, could have a substantial 
impact on productivity [389].  

A number of important proof-of-principles especially 
related to development of lipid-lowering drugs have 
been achieved through discoveries of PCSK9, APOC3 and 
ANGPTL3 loci [233, 390] and medicine being developed 
based on genetic identification. Especially the PCSK9 
locus is a successful example where the identification of 
both gain-of-function variants causing familial 
hypercholesterolemia [391] and subsequently loss-of-
function alleles associated with decreased LDL-
cholesterol and protection against CVD in the general 
population [210, 392]. These findings stimulated the 
development of antibody-based inhibitors targeting 
PSCK9, which were approved for the market in 2015 
[393, 394]. These drugs are a novel class of cholesterol 
lowering agents and are used as alternatives or 
adjuvants to treatment with statins. Although no such 
solid examples exist within T2D or obesity, there are 
indications that similar translational examples could 
emerge. For instance, as described in Part 2, three T2D 
susceptibility variants map to genes encoding drug 
targets for existing T2D drugs (PPARG, KCNJ11 and 
ABCC8) and genetic studies after drug development 
have also provided at least some additional evidence 
related to GLP1 receptor agonists [395, 396]. With 
excellent examples coming from lipid research, one may 
speculate why no such findings and translations have 
been achieved in T2D or obesity. One reason for this 
may be the higher complexity in the pathogenesis of 
T2D and obesity compared to the efforts in treatment of 
dyslipidaemia. As such, targeting pancreatic islet, 
intestinal cells, adipocytes, skeletal muscle or brain 
cells may thus be more complicated than reducing the 
levels of lipids in the blood both in terms of achieving 
efficacy and to avoid side-effects. However, pending 
findings may hold promise for future application of 
genetics to inspire and inform drug development and a 
future example could be related to SLC30A8 [211]. 
Variants with protective effect on disease may pose 
advantages for the development of drugs. In addition, 
identification of an allelic series of both gain-of-function 
and loss-of-function variants in relation to the 
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phenotype strengthens the knowledge being translated 
to modification of the target, as also seen for the PCSK9 
locus [397]. In addition, findings from studies included 
in this dissertation may in the future lead to 
development of drugs. For instance, major findings 
from the Greenlandic Inuit population [7, 9] may in the 
future lead to T2D medication targeting insulin 
resistance through TBC1D4 and drugs against obesity 
based on biology of ADCY3. In addition, the coding 
variant in CD300LG associated with triglyceride and 
HDL-cholesterol [5] may in turn into novel lipid 
treatments, although the lack of biological knowledge 
for this association is a complicating factor. 

 

The	 future	 of	 genetic	 research	 in	 type	 2	
diabetes	and	complex	disease	
With the seemingly ever-falling prizes for sequencing 
and genotyping, a huge number of large initiatives are 
currently under way generating genetic data at an 
unprecedented scale. The UK Biobank is currently the 
largest biobank with ~500,000 participants in whom 
genome-wide genotyping data are available [66] 
combined with rather detailed phenotype 
characterisation. Within a few years, these samples will 
also be whole exome sequenced to gain insights into 
rare coding variants. Other large initiatives include the 
Genomics England Project aiming at sequencing 
100,000 genomes of which ~70,000 are currently done 
[398], the US Million Veterans Program of 400,000 
individuals [399] and the Chinese Kadoorie Biobank 
with ~500,000 participants [400]. On top of these are a 
number of national healthcare-related sequencing 
initiatives. The increasing willingness to form 
academia-industry partnerships and the increased 
tendency for public availability of results and data 
sharing, for instance through the Genetics Portals 
initiated through the Accelerating Medicines 
Partnership, will in the coming years drastically 
increase the quantity and depth of data available for 
researchers. While is naturally important to increase 
sample sizes since genetic effects are modest at best, it 
is also important to consider improved clinical and 
molecular phenotyping of the individuals. Many cohorts 
include at least subsets with rather deep phenotypes 
and a lot of them have the opportunity for register-
based outcome analysis at follow-up which can prove to 
be a great strength [401]. Ideally, such huge collections 

of biobank samples can, besides register-based 
outcome data, also be merged with clinical data from 
digital hospital records opening for large-scale clinical 
genomics studies. These developments will in time 
probably lead to standard generation of detailed 
genetic data for every patient to be used when clinically 
relevant.  

While SNPs have been at the centre of all disease trait 
mapping described in this dissertation, a range of other 
types of variation also exist. Systematic investigations 
of other types of genetic variation, for instance 
deletions, insertions and structural variations, remain 
relatively sparse and only a few major findings have 
been done [402, 403]. Large scale sequencing initiatives 
will probably make it possible to directly assess the role 
of these types of variation in metabolic disease, 
however they also need to be included in future large-
scale imputation panels, which is not the case for the 
currently frequently used HRC panel [63]. Another 
uncertainty in genetic research is the extent to which 
interactions between genetic variation and 
environmental factors are important in the disease 
pathogenesis. While such interactions may seem logical, 
very few interactions have been firmly demonstrated in 
metabolic disease [404], with the interaction between 
FTO variants and physical activity on BMI being the 
most validated in metabolic traits [405, 406]. However, 
two recent genome-wide interaction studies of more 
than 200,000 individuals did identify novel interactions 
between genetic variants and physical activity or 
smoking on BMI [407, 408]; indicating that applying 
huge sample sizes may start to reveal genuine 
interaction effects.  

Furthermore, the future will see other kinds of omics 
data, such as tissue transcriptomics and single-cell 
sequencing, proteomics, metabolomics data, being 
increasingly generated on a large epidemiological scale 
and integrated with genetic data. In addition, data from 
wearable devices that monitor behaviours, exposures 
and digital imaging technologies will in the coming 
years contribute the collection of big data. All of this has 
the potential to substantially improve the prediction, 
prevention and treatment of T2D starting with patients 
carrying high impact variants or with high polygenic 
risk related to specific disease processes. However, 
developments in the analytical approaches seem to be 
needed the get the full benefit of a more holistic and 
integrative system medicines approach taking [409].  
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CONCLUSIONS	
 

The past decade has elucidated a large number of 
genomic loci associated with T2D and obesity. These 
loci are generally common and inflict only modest risk 
increments on disease. Evidence points to large number 
of risk variants below statistical significance, displaying 
the high degree of polygenicity of T2D, obesity and 
complex traits in general. These features have huge 
implications for precision medicine in metabolic 
diseases. Further exposures of the mechanistic insights 
are leading to translation of association signals into 
clinical useful knowledge especially in development of 
novel drugs, but this process has proven difficult and 
tedious. 

Work included in this dissertation has contributed to 
this development in several ways. First, identification of 
T2D genetic variants associated with intermediary 
phenotypes have shown that the major T2D-related 
intermediary phenotype is decreased insulin secretion. 
Second, sequencing-based studies included in the 
dissertation has proved to be a starting point for future 
in-depth characterisation of low-frequency and rare 

variants in complex traits. Third, major studies of the 
Greenlandic Inuit population have identified a number 
of biologically and possibly clinically important 
associations of functional variants and thereby shown 
the potentials of investigating the genetic contribution 
to metabolic traits in such a population. 

In the future, studies of mega-size cohorts and biobanks 
with deeply phenotyped samples coupled to clinical 
information will probably disentangle more clinically 
relevant omics-related knowledge with an impact on 
future precision medicine. Furthermore, an increased 
focus on translational and mechanistic research to 
make sense of the hundreds of loci associated T2D and 
obesity will inevitably reveal biological knowledge of 
huge importance for disease understanding and future 
drug development. 

 

	 	



- 56 - 

REFERENCES	
 

[1] Grarup N, Rose CS, Andersson EA, et al. (2007) Studies 
of association of variants near the HHEX, CDKN2A/B, and 
IGF2BP2 genes with type 2 diabetes and impaired insulin 
release in 10,705 Danish subjects: validation and extension of 
genome-wide association studies. Diabetes 56: 3105-3111 
[2] Grarup N, Andersen G, Krarup NT, et al. (2008) 
Association testing of novel type 2 diabetes risk alleles in the 
JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and 
NOTCH2 loci with insulin release, insulin sensitivity, and 
obesity in a population-based sample of 4,516 glucose-
tolerant middle-aged Danes. Diabetes 57: 2534-2540 
[3] Boesgaard TW, Grarup N, Jørgensen T, et al. (2010) 
Variants at DGKB/TMEM195, ADRA2A, GLIS3 and C2CD4B 
loci are associated with reduced glucose-stimulated beta cell 
function in middle-aged Danish people. Diabetologia 53: 1647-
1655 
[4] Grarup N, Overvad M, Sparsø T, et al. (2011) The 
diabetogenic VPS13C/C2CD4A/C2CD4B rs7172432 variant 
impairs glucose-stimulated insulin response in 5,722 non-
diabetic Danish individuals. Diabetologia 54: 789-794 
[5] Albrechtsen A, Grarup N, Li Y, et al. (2013) Exome 
sequencing-driven discovery of coding polymorphisms 
associated with common metabolic phenotypes. Diabetologia 
56: 298-310 
[6] Grarup N, Sulem P, Sandholt CH, et al. (2013) Genetic 
architecture of vitamin B12 and folate levels uncovered 
applying deeply sequenced large datasets. PLoS Genet 9: 
e1003530 
[7] Moltke I, Grarup N, Jørgensen ME, et al. (2014) A 
common Greenlandic TBC1D4 variant confers muscle insulin 
resistance and type 2 diabetes. Nature 512: 190-193 
[8] Grarup N, Moltke I, Andersen MK, et al. (2018) 
Identification of novel high-impact recessively inherited type 
2 diabetes risk variants in the Greenlandic population. 
Diabetologia 61: 2005-2015 
[9] Grarup N, Moltke I, Andersen MK, et al. (2018) Loss-
of-function variants in ADCY3 increase risk of obesity and type 
2 diabetes. Nat Genet 50: 172-174 
[10] IDF Diabetes Atlas IDF Diabetes Atlas, Sixth Edition. 
Available from http://www.idf.org/diabetesatlas, accessed 
06-01 2015 
[11] Hu FB (2011) Globalization of diabetes: the role of 
diet, lifestyle, and genes. Diabetes Care 34: 1249-1257 
[12] Defronzo RA (2009) Banting Lecture. From the 
triumvirate to the ominous octet: a new paradigm for the 
treatment of type 2 diabetes mellitus. Diabetes 58: 773-795 
[13] DeFronzo RA, Ferrannini E, Groop L, et al. (2015) Type 
2 diabetes mellitus. Nat Rev Dis Primers 1: 15019 
[14] Ferrannini E (1998) Insulin resistance versus insulin 
deficiency in non-insulin-dependent diabetes mellitus: 
problems and prospects. Endocr Rev 19: 477-490 
[15] Lillioja S, Mott DM, Spraul M, et al. (1993) Insulin 
resistance and insulin secretory dysfunction as precursors of 
non-insulin-dependent diabetes mellitus. Prospective studies 
of Pima Indians. N Engl J Med 329: 1988-1992 

[16] Haffner SM, Miettinen H, Gaskill SP, Stern MP (1995) 
Decreased insulin secretion and increased insulin resistance 
are independently related to the 7-year risk of NIDDM in 
Mexican-Americans. Diabetes 44: 1386-1391 
[17] Ferrannini E, Mari A (2004) Beta cell function and its 
relation to insulin action in humans: a critical appraisal. 
Diabetologia 47: 943-956 
[18] Bergman RN, Ader M, Huecking K, Van Citters G (2002) 
Accurate assessment of beta-cell function: the hyperbolic 
correction. Diabetes 51 Suppl 1: S212-220 
[19] Bergman RN, Phillips LS, Cobelli C (1981) Physiologic 
evaluation of factors controlling glucose tolerance in man: 
measurement of insulin sensitivity and beta-cell glucose 
sensitivity from the response to intravenous glucose. J Clin 
Invest 68: 1456-1467 
[20] Park Y, Zhu S, Palaniappan L, Heshka S, Carnethon MR, 
Heymsfield SB (2003) The metabolic syndrome: Prevalence 
and associated risk factor findings in the us population from 
the third national health and nutrition examination survey, 
1988-1994. Arch Intern Med 163: 427-436 
[21] Maier W, Holle R, Hunger M, et al. (2013) The impact 
of regional deprivation and individual socio-economic status 
on the prevalence of Type 2 diabetes in Germany. A pooled 
analysis of five population-based studies. Diabet Med 30: e78-
e86 
[22] Rathmann W, Scheidt-Nave C, Roden M, Herder C 
(2013) Type 2 diabetes: prevalence and relevance of genetic 
and acquired factors for its prediction. Dtsch Arztebl Int 110: 
331-337 
[23] Speakman JR, O'Rahilly S (2012) Fat: an evolving issue. 
Dis Model Mech 5: 569-573 
[24] Matsuda M, DeFronzo RA (1999) Insulin sensitivity 
indices obtained from oral glucose tolerance testing: 
comparison with the euglycemic insulin clamp. Diabetes Care 
22: 1462-1470 
[25] Sluiter WJ, Erkelens DW, Reitsma WD, Doorenbos H 
(1976) Glucose tolerance and insulin release, a mathematical 
approach I. Assay of the beta-cell response after oral glucose 
loading. Diabetes 25: 241-244 
[26] Meigs JB, Cupples LA, Wilson PW (2000) Parental 
transmission of type 2 diabetes: the Framingham Offspring 
Study. Diabetes 49: 2201-2207 
[27] Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, 
Friedman GD (1987) Concordance for type 2 (non-insulin-
dependent) diabetes mellitus in male twins. Diabetologia 30: 
763-768 
[28] Poulsen P, Ohm-Kyvik K, Vaag A, Beck-Nielsen H 
(1999) Heritability of type II (non-insulin-dependent) 
diabetes mellitus and abnormal glucose tolerance - A 
population-based twin study. Diabetologia 42: 139-145 
[29] Willemsen G, Ward KJ, Bell CG, et al. (2015) The 
Concordance and Heritability of Type 2 Diabetes in 34,166 
Twin Pairs From International Twin Registers: The Discordant 
Twin (DISCOTWIN) Consortium. Twin Res Hum Genet 18: 
762-771 



- 57 - 

[30] Elbein SC, Hasstedt SJ, Wegner K, Kahn SE (1999) 
Heritability of pancreatic beta-cell function among 
nondiabetic members of Caucasian familial type 2 diabetic 
kindreds. J Clin Endocrinol Metab 84: 1398-1403 
[31] Gjesing AP, Hornbak M, Allin KH, et al. (2014) High 
heritability and genetic correlation of intravenous glucose- 
and tolbutamide-induced insulin secretion among non-
diabetic family members of type 2 diabetic patients. 
Diabetologia 57: 1173-1181 
[32] Vaag A, Henriksen JE, Madsbad S, Holm N, Beck-
Nielsen H (1995) Insulin secretion, insulin action, and hepatic 
glucose production in identical twins discordant for non-
insulin-dependent diabetes mellitus. J Clin Invest 95: 690-698 
[33] Hemani G, Yang J, Vinkhuyzen A, et al. (2013) 
Inference of the genetic architecture underlying BMI and 
height with the use of 20,240 sibling pairs. Am J Hum Genet 
93: 865-875 
[34] Stunkard AJ, Harris JR, Pedersen NL, McClearn GE 
(1990) The body-mass index of twins who have been reared 
apart. N Engl J Med 322: 1483-1487 
[35] Vogler GP, Sorensen TI, Stunkard AJ, Srinivasan MR, 
Rao DC (1995) Influences of genes and shared family 
environment on adult body mass index assessed in an 
adoption study by a comprehensive path model. Int J Obes 
Relat Metab Disord 19: 40-45 
[36] Lander ES, Linton LM, Birren B, et al. (2001) Initial 
sequencing and analysis of the human genome. Nature 409: 
860-921 
[37] Sachidanandam R, Weissman D, Schmidt SC, et al. 
(2001) A map of human genome sequence variation 
containing 1.42 million single nucleotide polymorphisms. 
Nature 409: 928-933 
[38] Venter JC, Adams MD, Myers EW, et al. (2001) The 
sequence of the human genome. Science 291: 1304-1351 
[39] Lander ES (2011) Initial impact of the sequencing of 
the human genome. Nature 470: 187-197 
[40] Teare MD, Barrett JH (2005) Genetic linkage studies. 
Lancet 366: 1036-1044 
[41] Lander ES, Schork NJ (1994) Genetic dissection of 
complex traits. Science 265: 2037-2048 
[42] Reynisdottir I, Thorleifsson G, Benediktsson R, et al. 
(2003) Localization of a susceptibility gene for type 2 diabetes 
to chromosome 5q34-q35.2. Am J Hum Genet 73: 323-335 
[43] Grant SF, Thorleifsson G, Reynisdottir I, et al. (2006) 
Variant of transcription factor 7-like 2 (TCF7L2) gene confers 
risk of type 2 diabetes. Nat Genet 38: 320-323 
[44] Florez JC, Jablonski KA, Bayley N, et al. (2006) TCF7L2 
polymorphisms and progression to diabetes in the Diabetes 
Prevention Program. N Engl J Med 355: 241-250 
[45] Cauchi S, Froguel P (2008) TCF7L2 genetic defect and 
type 2 diabetes. Curr Diab Rep 8: 149-155 
[46] Mahajan A, Go MJ, Zhang W, et al. (2014) Genome-wide 
trans-ancestry meta-analysis provides insight into the genetic 
architecture of type 2 diabetes susceptibility. Nat Genet 46: 
234-244 
[47] Mahajan A, Taliun D, Thurner M, et al. (2018) Fine-
mapping type 2 diabetes loci to single-variant resolution using 
high-density imputation and islet-specific epigenome maps. 
Nat Genet 50: 1505-1513 

[48] Deeb SS, Fajas L, Nemoto M, et al. (1998) A Pro12Ala 
substitution in PPARgamma2 associated with decreased 
receptor activity, lower body mass index and improved insulin 
sensitivity. Nat Genet 20: 284-287 
[49] Altshuler D, Hirschhorn JN, Klannemark M, et al. 
(2000) The common PPARgamma Pro12Ala polymorphism is 
associated with decreased risk of type 2 diabetes. Nat Genet 
26: 76-80 
[50] Zeggini E, Scott LJ, Saxena R, et al. (2008) Meta-
analysis of genome-wide association data and large-scale 
replication identifies additional susceptibility loci for type 2 
diabetes. Nat Genet 40: 638-645 
[51] Gloyn AL, Weedon MN, Owen KR, et al. (2003) Large-
scale association studies of variants in genes encoding the 
pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) 
and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is 
associated with type 2 diabetes. Diabetes 52: 568-572 
[52] Nielsen EM, Hansen L, Carstensen B, et al. (2003) The 
E23K variant of Kir6.2 associates with impaired post-OGTT 
serum insulin response and increased risk of type 2 diabetes. 
Diabetes 52: 573-577 
[53] Morris AP, Voight BF, Teslovich TM, et al. (2012) 
Large-scale association analysis provides insights into the 
genetic architecture and pathophysiology of type 2 diabetes. 
Nat Genet 44: 981-990 
[54] Devlin B, Roeder K (1999) Genomic control for 
association studies. Biometrics 55: 997-1004 
[55] Price AL, Patterson NJ, Plenge RM, Weinblatt ME, 
Shadick NA, Reich D (2006) Principal components analysis 
corrects for stratification in genome-wide association studies. 
Nat Genet 38: 904-909 
[56] Lander ES (1996) The new genomics: global views of 
biology. Science 274: 536-539 
[57] Reich DE, Lander ES (2001) On the allelic spectrum of 
human disease. Trends Genet 17: 502-510 
[58] Visscher PM, Brown MA, McCarthy MI, Yang J (2012) 
Five years of GWAS discovery. Am J Hum Genet 90: 7-24 
[59] Pe'er I, Yelensky R, Altshuler D, Daly MJ (2008) 
Estimation of the multiple testing burden for genomewide 
association studies of nearly all common variants. Genet 
Epidemiol 32: 381-385 
[60] The International HapMap 3 Consortium (2010) 
Integrating common and rare genetic variation in diverse 
human populations. Nature 467: 52-58 
[61] The Genomes Project Consortium (2015) A global 
reference for human genetic variation. Nature 526: 68-74 
[62] UK10K Consortium, Walter K, Min JL, et al. (2015) The 
UK10K project identifies rare variants in health and disease. 
Nature 526: 82-90 
[63] McCarthy S, Das S, Kretzschmar W, et al. (2016) A 
reference panel of 64,976 haplotypes for genotype 
imputation. Nat Genet 48: 1279-1283 
[64] Manolio TA (2017) In Retrospect: A decade of shared 
genomic associations. Nature 546: 360-361 
[65] Sudlow C, Gallacher J, Allen N, et al. (2015) UK 
biobank: an open access resource for identifying the causes of 
a wide range of complex diseases of middle and old age. PLoS 
Med 12: e1001779 



- 58 - 

[66] Bycroft C, Freeman C, Petkova D, et al. (2018) The UK 
Biobank resource with deep phenotyping and genomic data. 
Nature 562: 203-209 
[67] Turcot V, Lu Y, Highland HM, et al. (2018) Protein-
altering variants associated with body mass index implicate 
pathways that control energy intake and expenditure in 
obesity. Nat Genet 50: 26-41 
[68] Pulit SL, Stoneman C, Morris AP, et al. (2018) Meta-
analysis of genome-wide association studies for body fat 
distribution in 694,649 individuals of European ancestry. 
Hum Mol Genet 10.1093/hmg/ddy327 
[69] Sladek R, Rocheleau G, Rung J, et al. (2007) A genome-
wide association study identifies novel risk loci for type 2 
diabetes. Nature 445: 881-885 
[70] Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. 
(2007) A variant in CDKAL1 influences insulin response and 
risk of type 2 diabetes. Nat Genet 39: 770-775 
[71] Zeggini E, Weedon MN, Lindgren CM, et al. (2007) 
Replication of Genome-Wide Association Signals in UK 
Samples Reveals Risk Loci for Type 2 Diabetes. Science 316: 
1336-1341 
[72] Diabetes Genetics Initiative of Broad Institute of 
Harvard and MIT Lund University and Novartis Institutes of 
BioMedical Research, Saxena R, Voight BF, et al. (2007) 
Genome-Wide Association Analysis Identifies Loci for Type 2 
Diabetes and Triglyceride Levels. Science 316: 1331-1336 
[73] Scott L, Mohlke K, Bonnycastle L, et al. (2007) A 
genome-wide association study of type 2 diabetes in Finns 
detects multiple susceptibility variants. Science 316: 1341-
1345 
[74] The Wellcome Trust Case Control Consortium (2007) 
Genome-wide association study of 14,000 cases of seven 
common diseases and 3,000 shared controls. Nature 447: 661-
678 
[75] Voight BF, Scott LJ, Steinthorsdottir V, et al. (2010) 
Twelve type 2 diabetes susceptibility loci identified through 
large-scale association analysis. Nat Genet 42: 579-589 
[76] Scott RA, Scott LJ, Magi R, et al. (2017) An Expanded 
Genome-Wide Association Study of Type 2 Diabetes in 
Europeans. Diabetes 66: 2888-2902 
[77] Meigs JB, Shrader P, Sullivan LM, et al. (2008) 
Genotype score in addition to common risk factors for 
prediction of type 2 diabetes. N Engl J Med 359: 2208-2219 
[78] Weedon MN, McCarthy MI, Hitman G, et al. (2006) 
Combining information from common type 2 diabetes risk 
polymorphisms improves disease prediction. PLoS Med 3: 
e374 
[79] Sparsø T, Grarup N, Andreasen C, et al. (2009) 
Combined analysis of 19 common validated type 2 diabetes 
susceptibility gene variants shows moderate discriminative 
value and no evidence of gene-gene interaction. Diabetologia 
52: 1308-1314 
[80] Chatterjee N, Shi J, Garcia-Closas M (2016) Developing 
and evaluating polygenic risk prediction models for stratified 
disease prevention. Nat Rev Genet 17: 392-406 
[81] Khera AV, Chaffin M, Aragam KG, et al. (2018) 
Genome-wide polygenic scores for common diseases identify 
individuals with risk equivalent to monogenic mutations. Nat 
Genet 50: 1219-1224 

[82] Torkamani A, Wineinger NE, Topol EJ (2018) The 
personal and clinical utility of polygenic risk scores. Nat Rev 
Genet 19: 581-590 
[83] Pepe MS, Janes H, Longton G, Leisenring W, Newcomb 
P (2004) Limitations of the odds ratio in gauging the 
performance of a diagnostic, prognostic, or screening marker. 
Am J Epidemiol 159: 882-890 
[84] Lyssenko V, Laakso M (2013) Genetic screening for the 
risk of type 2 diabetes: worthless or valuable? Diabetes Care 
36 Suppl 2: S120-126 
[85] Khera AV, Emdin CA, Drake I, et al. (2016) Genetic 
Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. 
N Engl J Med 375: 2349-2358 
[86] Knowles JW, Ashley EA (2018) Cardiovascular 
disease: The rise of the genetic risk score. PLoS Med 15: 
e1002546 
[87] Scott RA, Lagou V, Welch RP, et al. (2012) Large-scale 
association analyses identify new loci influencing glycemic 
traits and provide insight into the underlying biological 
pathways. Nat Genet 44: 991-1005 
[88] Manning AK, Hivert MF, Scott RA, et al. (2012) A 
genome-wide approach accounting for body mass index 
identifies genetic variants influencing fasting glycemic traits 
and insulin resistance. Nat Genet 44: 659-669 
[89] Saxena R, Hivert MF, Langenberg C, et al. (2010) 
Genetic variation in GIPR influences the glucose and insulin 
responses to an oral glucose challenge. Nat Genet 42: 142-148 
[90] Frayling TM, Timpson NJ, Weedon MN, et al. (2007) A 
common variant in the FTO gene is associated with body mass 
index and predisposes to childhood and adult obesity. Science 
316: 889-894 
[91] Loos RJ, Lindgren CM, Li S, et al. (2008) Common 
variants near MC4R are associated with fat mass, weight and 
risk of obesity. Nat Genet 40: 768-775 
[92] Locke AE, Kahali B, Berndt SI, et al. (2015) Genetic 
studies of body mass index yield new insights for obesity 
biology. Nature 518: 197-206 
[93] Lindgren CM, Heid IM, Randall JC, et al. (2009) 
Genome-wide association scan meta-analysis identifies three 
Loci influencing adiposity and fat distribution. PLoS Genet 5: 
e1000508 
[94] Thorleifsson G, Walters GB, Gudbjartsson DF, et al. 
(2009) Genome-wide association yields new sequence 
variants at seven loci that associate with measures of obesity. 
Nat Genet 41: 18-24 
[95] Shungin D, Winkler TW, Croteau-Chonka DC, et al. 
(2015) New genetic loci link adipose and insulin biology to 
body fat distribution. Nature 518: 187-196 
[96] Sandholt CH, Grarup N, Pedersen O, Hansen T (2015) 
Genome-wide association studies of human adiposity: 
Zooming in on synapses. Mol Cell Endocrinol 418 Pt 2: 90-100 
[97] Loos RJ (2018) The genetics of adiposity. Curr Opin 
Genet Dev 50: 86-95 
[98] Yengo L, Sidorenko J, Kemper KE, et al. (2018) Meta-
analysis of genome-wide association studies for height and 
body mass index in approximately 700000 individuals of 
European ancestry. Hum Mol Genet 27: 3541-3649 
[99] Grarup N, Sandholt CH, Hansen T, Pedersen O (2014) 
Genetic susceptibility to type 2 diabetes and obesity: from 



- 59 - 

genome-wide association studies to rare variants and beyond. 
Diabetologia 57: 1528-1541 
[100] Yang J, Bakshi A, Zhu Z, et al. (2015) Genetic variance 
estimation with imputed variants finds negligible missing 
heritability for human height and body mass index. Nat Genet 
47: 1114-1120 
[101] Grarup N, Sparsø T, Hansen T (2010) Physiologic 
characterization of type 2 diabetes-related loci. Curr Diab Rep 
10: 485-497 
[102] Bulik-Sullivan B, Finucane HK, Anttila V, et al. (2015) 
An atlas of genetic correlations across human diseases and 
traits. Nat Genet 47: 1236-1241 
[103] Zheng J, Erzurumluoglu AM, Elsworth BL, et al. (2017) 
LD Hub: a centralized database and web interface to perform 
LD score regression that maximizes the potential of summary 
level GWAS data for SNP heritability and genetic correlation 
analysis. Bioinformatics 33: 272-279 
[104] Pascoe L, Tura A, Patel SK, et al. (2007) Common 
variants of the novel type 2 diabetes genes CDKAL1 and 
HHEX/IDE are associated with decreased pancreatic beta-cell 
function. Diabetes 56: 3101-3104 
[105] Staiger H, Machicao F, Stefan N, et al. (2007) 
Polymorphisms within novel risk loci for type 2 diabetes 
determine beta-cell function. PLoS One 2: e832 
[106] Staiger H, Stancakova A, Zilinskaite J, et al. (2008) A 
candidate type 2 diabetes polymorphism near the HHEX locus 
affects acute glucose-stimulated insulin release in European 
populations: results from the EUGENE2 study. Diabetes 57: 
514-517 
[107] Boesgaard TW, Zilinskaite J, Vänttinen M, et al. (2008) 
The common SLC30A8 Arg325Trp variant is associated with 
reduced first-phase insulin release in 846 non-diabetic 
offspring of type 2 diabetes patients--the EUGENE2 study. 
Diabetologia 51: 816-820 
[108] Rung J, Cauchi S, Albrechtsen A, et al. (2009) Genetic 
variant near IRS1 is associated with type 2 diabetes, insulin 
resistance and hyperinsulinemia. Nat Genet 41: 1110-1115 
[109] Boesgaard TW, Gjesing AP, Grarup N, et al. (2009) 
Variant near ADAMTS9 known to associate with type 2 
diabetes is related to insulin resistance in offspring of type 2 
diabetes patients--EUGENE2 study. PLoS One 4: e7236 
[110] Florez JC (2008) Newly identified loci highlight beta 
cell dysfunction as a key cause of type 2 diabetes: where are 
the insulin resistance genes? Diabetologia 51: 1100-1110 
[111] Haring HU (2016) Novel phenotypes of prediabetes? 
Diabetologia 59: 1806-1818 
[112] DeFronzo RA (2004) Pathogenesis of type 2 diabetes 
mellitus. Med Clin North Am 88: 787-835 
[113] Hannon TS, Kahn SE, Utzschneider KM, et al. (2018) 
Review of methods for measuring beta-cell function: Design 
considerations from the Restoring Insulin Secretion (RISE) 
Consortium. Diabetes Obes Metab 20: 14-24 
[114] Ferrannini E, Mari A (1998) How to measure insulin 
sensitivity. J Hypertens 16: 895-906 
[115] Stumvoll M, Fritsche A, Haring H (2001) The OGTT as 
test for beta cell function? Eur J Clin Invest 31: 380-381 
[116] Hansen T, Drivsholm T, Urhammer SA, et al. (2007) 
The BIGTT test: a novel test for simultaneous measurement of 
pancreatic b-cell function, insulin sensitivity, and glucose 
tolerance. Diabetes Care 30: 257-262 

[117] Matthews DR, Hosker JP, Rudenski AS, Naylor BA, 
Treacher DF, Turner RC (1985) Homeostasis model 
assessment: insulin resistance and beta-cell function from 
fasting plasma glucose and insulin concentrations in man. 
Diabetologia 28: 412-419 
[118] Stumvoll M, Van Haeften T, Fritsche A, Gerich J (2001) 
Oral glucose tolerance test indexes for insulin sensitivity and 
secretion based on various availabilities of sampling times. 
Diabetes Care 24: 796-797 
[119] Stumvoll M, Mitrakou A, Pimenta W, et al. (2000) Use 
of the oral glucose tolerance test to assess insulin release and 
insulin sensitivity. Diabetes Care 23: 295-301 
[120] Walford GA, Gustafsson S, Rybin D, et al. (2016) 
Genome-Wide Association Study of the Modified Stumvoll 
Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as 
Novel Insulin Sensitivity Loci. Diabetes 65: 3200-3211 
[121] Knowles JW, Xie W, Zhang Z, et al. (2015) 
Identification and validation of N-acetyltransferase 2 as an 
insulin sensitivity gene. J Clin Invest 125: 1739-1751 
[122] Camporez JP, Wang Y, Faarkrog K, Chukijrungroat N, 
Petersen KF, Shulman GI (2017) Mechanism by which 
arylamine N-acetyltransferase 1 ablation causes insulin 
resistance in mice. Proc Natl Acad Sci U S A 114: E11285-
e11292 
[123] Chennamsetty I, Coronado M, Contrepois K, et al. 
(2016) Nat1 Deficiency Is Associated with Mitochondrial 
Dysfunction and Exercise Intolerance in Mice. Cell Rep 17: 
527-540 
[124] Prokopenko I, Poon W, Magi R, et al. (2014) A central 
role for GRB10 in regulation of islet function in man. PLoS 
Genet 10: e1004235 
[125] Wood AR, Jonsson A, Jackson AU, et al. (2017) A 
Genome-Wide Association Study of IVGTT-Based Measures of 
First Phase Insulin Secretion Refines the Underlying 
Physiology of Type 2 Diabetes Variants. Diabetes 66: 2296-
2309 
[126] Lyssenko V, Lupi R, Marchetti P, et al. (2007) 
Mechanisms by which common variants in the TCF7L2 gene 
increase risk of type 2 diabetes. J Clin Invest 117: 2155-2163 
[127] Villareal DT, Robertson H, Bell GI, et al. (2010) TCF7L2 
variant rs7903146 affects the risk of type 2 diabetes by 
modulating incretin action. Diabetes 59: 479-485 
[128] Schafer SA, Tschritter O, Machicao F, et al. (2007) 
Impaired glucagon-like peptide-1-induced insulin secretion in 
carriers of transcription factor 7-like 2 (TCF7L2) gene 
polymorphisms. Diabetologia 50: 2443-2450 
[129] Pilgaard K, Jensen CB, Schou JH, et al. (2009) The T 
allele of rs7903146 TCF7L2 is associated with impaired 
insulinotropic action of incretin hormones, reduced 24 h 
profiles of plasma insulin and glucagon, and increased hepatic 
glucose production in young healthy men. Diabetologia 52: 
1298-1307 
[130] Srinivasan S, Kaur V, Chamarthi B, et al. (2018) 
TCF7L2 Genetic Variation Augments Incretin Resistance and 
Influences Response to a Sulfonylurea and Metformin: The 
Study to Understand the Genetics of the Acute Response to 
Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes 
Care 41: 554-561 
[131] Gjesing AP, Ribel-Madsen R, Harder MN, et al. (2015) 
Genetic and phenotypic correlations between surrogate 



- 60 - 

measures of insulin release obtained from OGTT data. 
Diabetologia 58: 1006-1012 
[132] Jonsson A, Ladenvall C, Ahluwalia TS, et al. (2013) 
Effects of common genetic variants associated with type 2 
diabetes and glycemic traits on alpha- and beta-cell function 
and insulin action in humans. Diabetes 62: 2978-2983 
[133] Bouatia-Naji N, Bonnefond A, Cavalcanti-Proença C, et 
al. (2009) A variant near MTNR1B is associated with increased 
fasting plasma glucose levels and type 2 diabetes risk. Nat 
Genet 41: 89-94 
[134] Lyssenko V, Nagorny CL, Erdos MR, et al. (2009) 
Common variant in MTNR1B associated with increased risk of 
type 2 diabetes and impaired early insulin secretion. Nat 
Genet 41: 82-88 
[135] Prokopenko I, Langenberg C, Florez JC, et al. (2009) 
Variants in MTNR1B influence fasting glucose levels. Nat 
Genet 41: 77-81 
[136] Sparsø T, Bonnefond A, Andersson E, et al. (2009) G-
allele of intronic rs10830963 in MTNR1B confers increased 
risk of impaired fasting glycemia and type 2 diabetes through 
an impaired glucose-stimulated insulin release: studies 
involving 19,605 Europeans. Diabetes 58: 1450-1456 
[137] Bonnefond A, Clement N, Fawcett K, et al. (2012) Rare 
MTNR1B variants impairing melatonin receptor 1B function 
contribute to type 2 diabetes. Nat Genet 44: 297-301 
[138] Gaulton KJ, Ferreira T, Lee Y, et al. (2015) Genetic fine 
mapping and genomic annotation defines causal mechanisms 
at type 2 diabetes susceptibility loci. Nat Genet 47: 1415-1425 
[139] Bonnefond A, Froguel P (2017) The case for too little 
melatonin signalling in increased diabetes risk. Diabetologia 
60: 823-825 
[140] Mulder H (2017) Melatonin signalling and type 2 
diabetes risk: too little, too much or just right? Diabetologia 
60: 826-829 
[141] Dimas AS, Lagou V, Barker A, et al. (2014) Impact of 
type 2 diabetes susceptibility variants on quantitative 
glycemic traits reveals mechanistic heterogeneity. Diabetes 
63: 2158-2171 
[142] Mahajan A, Wessel J, Willems SM, et al. (2018) Refining 
the accuracy of validated target identification through coding 
variant fine-mapping in type 2 diabetes. Nat Genet 50: 559-
571 
[143] Udler MS, Kim J, von Grotthuss M, et al. (2018) Type 2 
diabetes genetic loci informed by multi-trait associations 
point to disease mechanisms and subtypes: A soft clustering 
analysis. PLoS Med 15: e1002654 
[144] Lotta LA, Gulati P, Day FR, et al. (2017) Integrative 
genomic analysis implicates limited peripheral adipose 
storage capacity in the pathogenesis of human insulin 
resistance. Nat Genet 49: 17-26 
[145] Yaghootkar H, Scott RA, White CC, et al. (2014) Genetic 
evidence for a normal-weight "metabolically obese" 
phenotype linking insulin resistance, hypertension, coronary 
artery disease, and type 2 diabetes. Diabetes 63: 4369-4377 
[146] Simonis-Bik AM, Nijpels G, van Haeften TW, et al. 
(2010) Gene variants in the novel type 2 diabetes loci 
CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B 
affect different aspects of pancreatic beta-cell function. 
Diabetes 59: 293-301 

[147] Polonsky KS, Rubenstein AH (1984) C-peptide as a 
measure of the secretion and hepatic extraction of insulin. 
Pitfalls and limitations. Diabetes 33: 486-494 
[148] Goodarzi MO, Guo X, Cui J, et al. (2013) Systematic 
evaluation of validated type 2 diabetes and glycaemic trait loci 
for association with insulin clearance. Diabetologia 56: 1282-
1290 
[149] Duckworth WC, Bennett RG, Hamel FG (1998) Insulin 
degradation: progress and potential. Endocr Rev 19: 608-624 
[150] Røder ME, Porte D, Jr., Schwartz RS, Kahn SE (1998) 
Disproportionately elevated proinsulin levels reflect the 
degree of impaired B cell secretory capacity in patients with 
noninsulin-dependent diabetes mellitus. J Clin Endocrinol 
Metab 83: 604-608 
[151] Strawbridge RJ, Dupuis J, Prokopenko I, et al. (2011) 
Genome-wide association identifies nine common variants 
associated with fasting proinsulin levels and provides new 
insights into the pathophysiology of type 2 diabetes. Diabetes 
60: 2624-2634 
[152] Ingelsson E, Langenberg C, Hivert MF, et al. (2010) 
Detailed physiologic characterization reveals diverse 
mechanisms for novel genetic loci regulating glucose and 
insulin metabolism in humans. Diabetes 59: 1266-1275 
[153] Willer CJ, Speliotes EK, Loos RJ, et al. (2009) Six new 
loci associated with body mass index highlight a neuronal 
influence on body weight regulation. Nat Genet 41: 25-34 
[154] Sparsø T, Andersen G, Nielsen T, et al. (2008) The 
GCKR rs780094 polymorphism is associated with elevated 
fasting serum triacylglycerol, reduced fasting and OGTT-
related insulinaemia, and reduced risk of type 2 diabetes. 
Diabetologia 51: 70-75 
[155] Kilpelainen TO, Zillikens MC, Stancakova A, et al. 
(2011) Genetic variation near IRS1 associates with reduced 
adiposity and an impaired metabolic profile. Nat Genet 43: 
753-760 
[156] Yamauchi T, Hara K, Maeda S, et al. (2010) A genome-
wide association study in the Japanese population identifies 
susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-
C2CD4B. Nat Genet 42: 864-868 
[157] Schafer SA, Mussig K, Staiger H, et al. (2009) A 
common genetic variant in WFS1 determines impaired 
glucagon-like peptide-1-induced insulin secretion. 
Diabetologia 52: 1075-1082 
[158] Sparsø T, Andersen G, Albrechtsen A, et al. (2008) 
Impact of polymorphisms in WFS1 on prediabetic phenotypes 
in a population-based sample of middle-aged people with 
normal and abnormal glucose regulation. Diabetologia 51: 
1646-1652 
[159] Harder MN, Appel EV, Grarup N, et al. (2015) The type 
2 diabetes risk allele of TMEM154-rs6813195 associates with 
decreased beta cell function in a study of 6,486 Danes. PLoS 
One 10: e0120890 
[160] Richards JB, Waterworth D, O'Rahilly S, et al. (2009) A 
genome-wide association study reveals variants in ARL15 that 
influence adiponectin levels. PLoS Genet 5: e1000768 
[161] Ried JS, Jeff MJ, Chu AY, et al. (2016) A principal 
component meta-analysis on multiple anthropometric traits 
identifies novel loci for body shape. Nat Commun 7: 13357 
[162] Thomsen SK, Raimondo A, Hastoy B, et al. (2018) Type 
2 diabetes risk alleles in PAM impact insulin release from 
human pancreatic beta-cells. Nat Genet 50: 1122-1131 



- 61 - 

[163] Rose CS, Ek J, Urhammer SA, et al. (2005) A -30G>A 
polymorphism of the beta-cell-specific glucokinase promoter 
associates with hyperglycemia in the general population of 
whites. Diabetes 54: 3026-3031 
[164] Harder MN, Ribel-Madsen R, Justesen JM, et al. (2013) 
Type 2 diabetes risk alleles near BCAR1 and in ANK1 associate 
with decreased beta-cell function whereas risk alleles near 
ANKRD55 and GRB14 associate with decreased insulin 
sensitivity in the Danish Inter99 cohort. J Clin Endocrinol 
Metab 98: E801-806 
[165] Loos RJ, Franks PW, Francis RW, et al. (2007) TCF7L2 
polymorphisms modulate proinsulin levels and beta-cell 
function in a British Europid population. Diabetes 56: 1943-
1947 
[166] Yasuda K, Miyake K, Horikawa Y, et al. (2008) Variants 
in KCNQ1 are associated with susceptibility to type 2 diabetes 
mellitus. Nat Genet 40: 1092-1097 
[167] Mussig K, Staiger H, Machicao F, et al. (2009) 
Association of type 2 diabetes candidate polymorphisms in 
KCNQ1 with incretin and insulin secretion. Diabetes 58: 1715-
1720 
[168] Stancáková A, Kuulasmaa T, Paananen J, et al. (2009) 
Association of 18 confirmed susceptibility loci for type 2 
diabetes with indices of insulin release, proinsulin conversion, 
and insulin sensitivity in 5,327 nondiabetic Finnish men. 
Diabetes 58: 2129-2136 
[169] Nielsen T, Sparso T, Grarup N, et al. (2011) Type 2 
diabetes risk allele near CENTD2 is associated with decreased 
glucose-stimulated insulin release. Diabetologia 54: 1052-
1056 
[170] Steinthorsdottir V, Thorleifsson G, Sulem P, et al. 
(2014) Identification of low-frequency and rare sequence 
variants associated with elevated or reduced risk of type 2 
diabetes. Nat Genet 46: 294-298 
[171] Yaghootkar H, Stancakova A, Freathy RM, et al. (2015) 
Association analysis of 29,956 individuals confirms that a low-
frequency variant at CCND2 halves the risk of type 2 diabetes 
by enhancing insulin secretion. Diabetes 64: 2279-2285 
[172] Romeo S, Kozlitina J, Xing C, et al. (2008) Genetic 
variation in PNPLA3 confers susceptibility to nonalcoholic 
fatty liver disease. Nat Genet 40: 1461-1465 
[173] Romeo S, Sentinelli F, Cambuli VM, et al. (2010) The 
148M allele of the PNPLA3 gene is associated with indices of 
liver damage early in life. J Hepatol 53: 335-338 
[174] Pingitore P, Romeo S (2018) The role of PNPLA3 in 
health and disease. Biochim Biophys Acta 18 
[175] Trepo E, Romeo S, Zucman-Rossi J, Nahon P (2016) 
PNPLA3 gene in liver diseases. J Hepatol 65: 399-412 
[176] Liu DJ, Peloso GM, Yu H, et al. (2017) Exome-wide 
association study of plasma lipids in >300,000 individuals. Nat 
Genet 49: 1758-1766 
[177] Tundo GR, Sbardella D, Ciaccio C, et al. (2017) Multiple 
functions of insulin-degrading enzyme: a metabolic 
crosslight? Crit Rev Biochem Mol Biol 52: 554-582 
[178] Maianti JP, McFedries A, Foda ZH, et al. (2014) Anti-
diabetic activity of insulin-degrading enzyme inhibitors 
mediated by multiple hormones. Nature 511: 94-98 
[179] Tang WJ (2016) Targeting Insulin-Degrading Enzyme 
to Treat Type 2 Diabetes Mellitus. Trends Endocrinol Metab 
27: 24-34 

[180] Rosengren AH, Braun M, Mahdi T, et al. (2012) 
Reduced insulin exocytosis in human pancreatic beta-cells 
with gene variants linked to type 2 diabetes. Diabetes 61: 
1726-1733 
[181] Grarup N, Rose CS, Andersson EA, et al. (2007) Studies 
of association of variants near the HHEX, CDKN2A/B, and 
IGF2BP2 genes with type 2 diabetes and impaired insulin 
release in 10,705 Danish subjects: validation and extension of 
genome-wide association studies. Diabetes 56: 3105-3111 
[182] Helgadottir A, Thorleifsson G, Manolescu A, et al. 
(2007) A Common Variant on Chromosome 9p21 Affects the 
Risk of Myocardial Infarction. Science 316: 1491-1493 
[183] McPherson R, Pertsemlidis A, Kavaslar N, et al. (2007) 
A Common Allele on Chromosome 9 Associated with Coronary 
Heart Disease. Science 316: 1488-1491 
[184] Hannou SA, Wouters K, Paumelle R, Staels B (2015) 
Functional genomics of the CDKN2A/B locus in cardiovascular 
and metabolic disease: what have we learned from GWASs? 
Trends Endocrinol Metab 26: 176-184 
[185] Kohler CU, Olewinski M, Tannapfel A, Schmidt WE, 
Fritsch H, Meier JJ (2011) Cell cycle control of beta-cell 
replication in the prenatal and postnatal human pancreas. Am 
J Physiol Endocrinol Metab 300: E221-230 
[186] Krishnamurthy J, Ramsey MR, Ligon KL, et al. (2006) 
p16INK4a induces an age-dependent decline in islet 
regenerative potential. Nature 443: 453-457 
[187] Moritani M, Yamasaki S, Kagami M, et al. (2005) 
Hypoplasia of endocrine and exocrine pancreas in 
homozygous transgenic TGF-beta1. Mol Cell Endocrinol 229: 
175-184 
[188] Pal A, Potjer TP, Thomsen SK, et al. (2016) Loss-of-
Function Mutations in the Cell-Cycle Control Gene CDKN2A 
Impact on Glucose Homeostasis in Humans. Diabetes 65: 527-
533 
[189] Fogarty MP, Panhuis TM, Vadlamudi S, Buchkovich 
ML, Mohlke KL (2013) Allele-specific transcriptional activity 
at type 2 diabetes-associated single nucleotide 
polymorphisms in regions of pancreatic islet open chromatin 
at the JAZF1 locus. Diabetes 62: 1756-1762 
[190] Fogarty MP, Cannon ME, Vadlamudi S, Gaulton KJ, 
Mohlke KL (2014) Identification of a regulatory variant that 
binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 
diabetes GWAS locus. PLoS Genet 10: e1004633 
[191] Coutinho M, Gerstein HC, Wang Y, Yusuf S (1999) The 
relationship between glucose and incident cardiovascular 
events. A metaregression analysis of published data from 20 
studies of 95,783 individuals followed for 12.4 years. Diabetes 
Care 22: 233-240 
[192] Lawlor DA, Fraser A, Ebrahim S, Smith GD (2007) 
Independent associations of fasting insulin, glucose, and 
glycated haemoglobin with stroke and coronary heart disease 
in older women. PLoS Med 4: e263 
[193] Lawes CM, Parag V, Bennett DA, et al. (2004) Blood 
glucose and risk of cardiovascular disease in the Asia Pacific 
region. Diabetes Care 27: 2836-2842 
[194] Auton A, Brooks LD, Durbin RM, et al. (2015) A global 
reference for human genetic variation. Nature 526: 68-74 
[195] Stitziel NO, Kiezun A, Sunyaev S (2011) Computational 
and statistical approaches to analyzing variants identified by 
exome sequencing. Genome Biol 12: 227 



- 62 - 

[196] Ladouceur M, Dastani Z, Aulchenko YS, Greenwood 
CM, Richards JB (2012) The empirical power of rare variant 
association methods: results from sanger sequencing in 1,998 
individuals. PLoS Genet 8: e1002496 
[197] Liu DJ, Peloso GM, Zhan X, et al. (2014) Meta-analysis 
of gene-level tests for rare variant association. Nat Genet 46: 
200-204 
[198] Zuk O, Schaffner SF, Samocha K, et al. (2014) Searching 
for missing heritability: Designing rare variant association 
studies. Proc Natl Acad Sci U S A 111: E455-E464 
[199] Yang J, Benyamin B, McEvoy BP, et al. (2010) Common 
SNPs explain a large proportion of the heritability for human 
height. Nat Genet 42: 565-569 
[200] Gibson G (2012) Rare and common variants: twenty 
arguments. Nat Rev Genet 13: 135-145 
[201] Pritchard JK, Cox NJ (2002) The allelic architecture of 
human disease genes: common disease-common variant...or 
not? Hum Mol Genet 11: 2417-2423 
[202] Bodmer W, Bonilla C (2008) Common and rare 
variants in multifactorial susceptibility to common diseases. 
Nat Genet 40: 695-701 
[203] Pritchard JK (2001) Are rare variants responsible for 
susceptibility to complex diseases? Am J Hum Genet 69: 124-
137 
[204] McClellan J, King MC (2010) Genetic heterogeneity in 
human disease. Cell 141: 210-217 
[205] Tennessen JA, Bigham AW, O'Connor TD, et al. (2012) 
Evolution and functional impact of rare coding variation from 
deep sequencing of human exomes. Science 337: 64-69 
[206] Eyre-Walker A (2010) Evolution in health and 
medicine Sackler colloquium: Genetic architecture of a 
complex trait and its implications for fitness and genome-wide 
association studies. Proc Natl Acad Sci U S A 107 Suppl 1: 
1752-1756 
[207] Cirulli ET, Goldstein DB (2010) Uncovering the roles 
of rare variants in common disease through whole-genome 
sequencing. Nat Rev Genet 11: 415-425 
[208] Shendure J, Balasubramanian S, Church GM, et al. 
(2017) DNA sequencing at 40: past, present and future. Nature 
550: 345-353 
[209] Albert TJ, Molla MN, Muzny DM, et al. (2007) Direct 
selection of human genomic loci by microarray hybridization. 
Nat Methods 4: 903-905 
[210] Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia 
CK, Hobbs HH (2005) Low LDL cholesterol in individuals of 
African descent resulting from frequent nonsense mutations 
in PCSK9. Nat Genet 37: 161-165 
[211] Flannick J, Thorleifsson G, Beer NL, et al. (2014) Loss-
of-function mutations in SLC30A8 protect against type 2 
diabetes. Nat Genet 46: 357-363 
[212] Rivas MA, Pirinen M, Conrad DF, et al. (2015) Effect of 
predicted protein-truncating genetic variants on the human 
transcriptome. Science 348: 666-669 
[213] Ng SB, Turner EH, Robertson PD, et al. (2009) 
Targeted capture and massively parallel sequencing of 12 
human exomes. Nature 461: 272-276 
[214] Ng SB, Buckingham KJ, Lee C, et al. (2010) Exome 
sequencing identifies the cause of a mendelian disorder. Nat 
Genet 42: 30-35 

[215] Surakka I, Horikoshi M, Magi R, et al. (2015) The 
impact of low-frequency and rare variants on lipid levels. Nat 
Genet 47: 589-597 
[216] Fuchsberger C, Flannick J, Teslovich TM, et al. (2016) 
The genetic architecture of type 2 diabetes. Nature 536: 41-47 
[217] Helgadottir A, Gretarsdottir S, Thorleifsson G, et al. 
(2016) Variants with large effects on blood lipids and the role 
of cholesterol and triglycerides in coronary disease. Nat Genet 
48: 634-639 
[218] Borrego F (2013) The CD300 molecules: an emerging 
family of regulators of the immune system. Blood 121: 1951-
1960 
[219] Cannon JP, O'Driscoll M, Litman GW (2012) Specific 
lipid recognition is a general feature of CD300 and TREM 
molecules. Immunogenetics 64: 39-47 
[220] Umemoto E, Hayasaka H, Bai Z, et al. (2011) Novel 
regulators of lymphocyte trafficking across high endothelial 
venules. Crit Rev Immunol 31: 147-169 
[221] Takatsu H, Hase K, Ohmae M, et al. (2006) CD300 
antigen like family member G: A novel Ig receptor like protein 
exclusively expressed on capillary endothelium. Biochem 
Biophys Res Commun 348: 183-191 
[222] Kooner JS, Saleheen D, Sim X, et al. (2011) Genome-
wide association study in individuals of South Asian ancestry 
identifies six new type 2 diabetes susceptibility loci. Nat Genet 
43: 984-989 
[223] Heid IM, Jackson AU, Randall JC, et al. (2010) Meta-
analysis identifies 13 new loci associated with waist-hip ratio 
and reveals sexual dimorphism in the genetic basis of fat 
distribution. Nat Genet 42: 949-960 
[224] Teslovich TM, Musunuru K, Smith AV, et al. (2010) 
Biological, clinical and population relevance of 95 loci for 
blood lipids. Nature 466: 707-713 
[225] Cooney GJ, Lyons RJ, Crew AJ, et al. (2004) Improved 
glucose homeostasis and enhanced insulin signalling in 
Grb14-deficient mice. EMBO J 23: 582-593 
[226] Hu L, Xiao Y, Xiong Z, et al. (2017) MACF1, versatility 
in tissue-specific function and in human disease. Semin Cell 
Dev Biol 69: 3-8 
[227] Nicolson TJ, Bellomo EA, Wijesekara N, et al. (2009) 
Insulin storage and glucose homeostasis in mice null for the 
granule zinc transporter ZnT8 and studies of the type 2 
diabetes-associated variants. Diabetes 58: 2070-2083 
[228] Tamaki M, Fujitani Y, Hara A, et al. (2013) The 
diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic 
insulin clearance. J Clin Invest 123: 4513-4524 
[229] Rutter GA, Chimienti F (2015) SLC30A8 mutations in 
type 2 diabetes. Diabetologia 58: 31-36 
[230] Lohmueller KE, Sparsø T, Li Q, et al. (2013) Whole-
exome sequencing of 2,000 Danish individuals and the role of 
rare coding variants in type 2 diabetes. Am J Hum Genet 93: 
1072-1086 
[231] Timpson NJ, Walter K, Min JL, et al. (2014) A rare 
variant in APOC3 is associated with plasma triglyceride and 
VLDL levels in Europeans. Nat Commun 5: 4871 
[232] Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, 
Tybjaerg-Hansen A (2014) Loss-of-function mutations in 
APOC3 and risk of ischemic vascular disease. N Engl J Med 371: 
32-41 



- 63 - 

[233] TG and HDL Working Group of the Exome Sequencing 
Project NH, Lung, and Blood Institute, Crosby J, Peloso GM, et 
al. (2014) Loss-of-function mutations in APOC3, triglycerides, 
and coronary disease. N Engl J Med 371: 22-31 
[234] Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, 
McPherson R, Hobbs HH (2004) Multiple rare alleles 
contribute to low plasma levels of HDL cholesterol. Science 
305: 869-872 
[235] Cohen JC, Pertsemlidis A, Fahmi S, et al. (2006) 
Multiple rare variants in NPC1L1 associated with reduced 
sterol absorption and plasma low-density lipoprotein levels. 
Proc Natl Acad Sci U S A 103: 1810-1815 
[236] Dewey FE, Murray MF, Overton JD, et al. (2016) 
Distribution and clinical impact of functional variants in 
50,726 whole-exome sequences from the DiscovEHR study. 
Science 354: aaf6814 
[237] Lange LA, Hu Y, Zhang H, et al. (2014) Whole-exome 
sequencing identifies rare and low-frequency coding variants 
associated with LDL cholesterol. Am J Hum Genet 94: 233-245 
[238] Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-
variant association analysis: study designs and statistical 
tests. Am J Hum Genet 95: 5-23 
[239] Huyghe JR, Jackson AU, Fogarty MP, et al. (2013) 
Exome array analysis identifies new loci and low-frequency 
variants influencing insulin processing and secretion. Nat 
Genet 45: 197-201 
[240] McCarthy MI, Abecasis GR, Cardon LR, et al. (2008) 
Genome-wide association studies for complex traits: 
consensus, uncertainty and challenges. Nat Rev Genet 9: 356-
369 
[241] Justice AE, Karaderi T, Highland HM, et al. (2018) 
Protein-coding variants implicate novel genes related to lipid-
homeostasis contributing to body fat distribution. BioRxiv 
10.1101/352674 
[242] Gudbjartsson DF, Helgason H, Gudjonsson SA, et al. 
(2015) Large-scale whole-genome sequencing of the Icelandic 
population. Nat Genet 47: 435-444 
[243] Kong A, Masson G, Frigge ML, et al. (2008) Detection of 
sharing by descent, long-range phasing and haplotype 
imputation. Nat Genet 40: 1068-1075 
[244] Rafnar T, Gudbjartsson DF, Sulem P, et al. (2011) 
Mutations in BRIP1 confer high risk of ovarian cancer. Nat 
Genet 43: 1104-1107 
[245] Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin 
(coenzyme B12): synthesis and biological significance. Annu 
Rev Microbiol 50: 137-181 
[246] Scott JM (1999) Folate and vitamin B12. Proc Nutr Soc 
58: 441-448 
[247] Knight BA, Shields BM, Brook A, et al. (2015) Lower 
Circulating B12 Is Associated with Higher Obesity and Insulin 
Resistance during Pregnancy in a Non-Diabetic White British 
Population. PLoS One 10: e0135268 
[248] Rafnsson SB, Saravanan P, Bhopal RS, Yajnik CS (2011) 
Is a low blood level of vitamin B12 a cardiovascular and 
diabetes risk factor? A systematic review of cohort studies. 
Eur J Nutr 50: 97-106 
[249] Krishnaveni GV, Hill JC, Veena SR, et al. (2009) Low 
plasma vitamin B12 in pregnancy is associated with 
gestational 'diabesity' and later diabetes. Diabetologia 52: 
2350-2358 

[250] Adaikalakoteswari A, Jayashri R, Sukumar N, et al. 
(2014) Vitamin B12 deficiency is associated with adverse lipid 
profile in Europeans and Indians with type 2 diabetes. 
Cardiovasc Diabetol 13: 129 
[251] Weikert C, Dierkes J, Hoffmann K, et al. (2007) B 
vitamin plasma levels and the risk of ischemic stroke and 
transient ischemic attack in a German cohort. Stroke 38: 2912-
2918 
[252] Hazra A, Kraft P, Lazarus R, et al. (2009) Genome-wide 
significant predictors of metabolites in the one-carbon 
metabolism pathway. Hum Mol Genet 18: 4677-4687 
[253] Hazra A, Kraft P, Selhub J, et al. (2008) Common 
variants of FUT2 are associated with plasma vitamin B12 
levels. Nat Genet 40: 1160-1162 
[254] Lin X, Lu D, Gao Y, et al. (2012) Genome-wide 
association study identifies novel loci associated with serum 
level of vitamin B12 in Chinese men. Hum Mol Genet 21: 2610-
2617 
[255] Hustad S, Midttun O, Schneede J, Vollset SE, Grotmol T, 
Ueland PM (2007) The methylenetetrahydrofolate reductase 
677C-->T polymorphism as a modulator of a B vitamin 
network with major effects on homocysteine metabolism. Am 
J Hum Genet 80: 846-855 
[256] Visscher PM, Wray NR, Zhang Q, et al. (2017) 10 Years 
of GWAS Discovery: Biology, Function, and Translation. Am J 
Hum Genet 101: 5-22 
[257] Davey Smith G, Hemani G (2014) Mendelian 
randomization: genetic anchors for causal inference in 
epidemiological studies. Hum Mol Genet 23: R89-98 
[258] Pingault JB, O'Reilly PF, Schoeler T, Ploubidis GB, 
Rijsdijk F, Dudbridge F (2018) Using genetic data to 
strengthen causal inference in observational research. Nat Rev 
Genet 19: 566-580 
[259] Allin KH, Friedrich N, Pietzner M, et al. (2017) Genetic 
determinants of serum vitamin B12 and their relation to body 
mass index. Eur J Epidemiol 32: 125-134 
[260] Husemoen LL, Skaaby T, Thuesen BH, et al. (2016) 
Mendelian randomisation study of the associations of vitamin 
B12 and folate genetic risk scores with blood pressure and 
fasting serum lipid levels in three Danish population-based 
studies. Eur J Clin Nutr 70: 613-619 
[261] Moen GH, Qvigstad E, Birkeland KI, Evans DM, Sommer 
C (2018) Are serum concentrations of vitamin B-12 causally 
related to cardiometabolic risk factors and disease? A 
Mendelian randomization study. Am J Clin Nutr 108: 398-404 
[262] Debreceni B, Debreceni L (2014) The role of 
homocysteine-lowering B-vitamins in the primary prevention 
of cardiovascular disease. Cardiovasc Ther 32: 130-138 
[263] Rimm EB, Stampfer MJ (2011) Folate and 
cardiovascular disease: one size does not fit all. Lancet 378: 
544-546 
[264] Imamura M, Takahashi A, Yamauchi T, et al. (2016) 
Genome-wide association studies in the Japanese population 
identify seven novel loci for type 2 diabetes. Nat Commun 7: 
10531 
[265] Cho YS, Chen CH, Hu C, et al. (2012) Meta-analysis of 
genome-wide association studies identifies eight new loci for 
type 2 diabetes in east Asians. Nat Genet 44: 67-72 



- 64 - 

[266] Morris AP (2018) Progress in defining the genetic 
contribution to type 2 diabetes susceptibility. Curr Opin Genet 
Dev 50: 41-51 
[267] Lohmueller KE (2014) The impact of population 
demography and selection on the genetic architecture of 
complex traits. PLoS Genet 10: e1004379 
[268] Gulløv HC (2004) Grønlands forhistorie. Gyldendal, 
Copenhagen 
[269] Raghavan M, DeGiorgio M, Albrechtsen A, et al. (2014) 
The genetic prehistory of the New World Arctic. Science 345: 
1255832 
[270] Moltke I, Fumagalli M, Korneliussen TS, et al. (2015) 
Uncovering the genetic history of the present-day Greenlandic 
population. Am J Hum Genet 96: 54-69 
[271] Grarup N, Moltke I, Albrechtsen A, Hansen T (2015) 
Diabetes in Population Isolates: Lessons from Greenland. Rev 
Diabet Stud 12: 320-329 
[272] Diamond J (2003) The double puzzle of diabetes. 
Nature 423: 599-602 
[273] Schulz LO, Chaudhari LS (2015) High-Risk 
Populations: The Pimas of Arizona and Mexico. Curr Obes Rep 
4: 92-98 
[274] Baier L, Hanson R (2004) Genetic studies of the 
etiology of type 2 diabetes in Pima Indians: hunting for pieces 
to a complicated puzzle. Diabetes 53: 1181-1186 
[275] Alberti KG, Zimmet PZ (1998) Definition, diagnosis 
and classification of diabetes mellitus and its complications. 
Part 1: diagnosis and classification of diabetes mellitus 
provisional report of a WHO consultation. Diabet Med 15: 539-
553 
[276] Sagild U, Littauer J, Jespersen CS, Andersen S (1966) 
Epidemiological studies in Greenland 1962-1964. I. Diabetes 
mellitus in Eskimos. Acta Med Scand 179: 29-39 
[277] Jørgensen ME, Borch-Johnsen K, Stolk R, Bjerregaard P 
(2013) Fat Distribution and Glucose Intolerance Among 
Greenland Inuit. Diabetes Care 36: 2988-2994 
[278] Bjerregaard P, Curtis T, Borch-Johnsen K, et al. (2003) 
Inuit health in Greenland: a population survey of life style and 
disease in Greenland and among Inuit living in Denmark. Int J 
Circumpolar Health 62 Suppl 1: 3-79 
[279] Young TK, Bjerregaard P, Dewailly E, Risica PM, 
Jorgensen ME, Ebbesson SE (2007) Prevalence of obesity and 
its metabolic correlates among the circumpolar inuit in 3 
countries. Am J Public Health 97: 691-695 
[280] Bjerregaard P, Jorgensen ME (2013) Prevalence of 
obesity among Inuit in Greenland and temporal trend by social 
position. Am J Hum Biol 25: 335-340 
[281] Andersen S, Rex KF, Noahsen P, et al. (2014) Forty-five 
year trends in overweight and obesity in an indigenous arctic 
Inuit Society in transition and spatiotemporal trends. Am J 
Hum Biol 26: 511-517 
[282] Jørgensen ME, Glumer C, Bjerregaard P, Gyntelberg F, 
Jørgensen T, Borch-Johnsen K (2003) Obesity and central fat 
pattern among Greenland Inuit and a general population of 
Denmark (Inter99): relationship to metabolic risk factors. Int 
J Obes Relat Metab Disord 27: 1507-1515 
[283] Jørgensen ME, Borch-Johnsen K, Bjerregaard P (2006) 
Lifestyle modifies obesity-associated risk of cardiovascular 
disease in a genetically homogeneous population. Am J Clin 
Nutr 84: 29-36 

[284] Jorgensen ME, Borch-Johnsen K, Stolk R, Bjerregaard P 
(2013) Fat distribution and glucose intolerance among 
Greenland Inuit. Diabetes Care 36: 2988-2994 
[285] Jørgensen ME, Borch-Johnsen K, Witte DR, 
Bjerregaard P (2012) Diabetes in Greenland and its 
relationship with urbanization. Diabet Med 29: 755-760 
[286] Jeppesen C, Bjerregaard P, Jorgensen ME (2014) 
Dietary patterns in Greenland and their relationship with type 
2 diabetes mellitus and glucose intolerance. Public Health 
Nutr 17: 462-470 
[287] Dahl-Petersen IK, Bjerregaard P, Brage S, Jorgensen 
ME (2013) Physical activity energy expenditure is associated 
with 2-h insulin independently of obesity among Inuit in 
Greenland. Diabetes Res Clin Pract 102: 242-249 
[288] Voight BF, Kang HM, Ding J, et al. (2012) The 
metabochip, a custom genotyping array for genetic studies of 
metabolic, cardiovascular, and anthropometric traits. PLoS 
Genet 8: e1002793 
[289] Manousaki D, Kent JW, Jr., Haack K, et al. (2016) 
Toward Precision Medicine: TBC1D4 Disruption Is Common 
Among the Inuit and Leads to Underdiagnosis of Type 2 
Diabetes. Diabetes Care 39: 1889-1895 
[290] Sano H, Kane S, Sano E, et al. (2003) Insulin-stimulated 
Phosphorylation of a Rab GTPase-activating Protein Regulates 
GLUT4 Translocation. J Biol Chem 278: 14599-14602 
[291] Wang HY, Ducommun S, Quan C, et al. (2013) AS160 
deficiency causes whole-body insulin resistance via composite 
effects in multiple tissues. Biochem J 449: 479-489 
[292] Lansey MN, Walker NN, Hargett SR, Stevens JR, Keller 
SR (2012) Deletion of Rab GAP AS160 modifies glucose uptake 
and GLUT4 translocation in primary skeletal muscles and 
adipocytes and impairs glucose homeostasis. Am J Physiol 
Endocrinol Metab 303: E1273-E1286 
[293] Treebak JT, Frøsig C, Pehmøller C, et al. (2009) 
Potential role of TBC1D4 in enhanced post-exercise insulin 
action in human skeletal muscle. Diabetologia 52: 891-900 
[294] Vind BF, Pehmøller C, Treebak JT, et al. (2011) 
Impaired insulin-induced site-specific phosphorylation of 
TBC1 domain family, member 4 (TBC1D4) in skeletal muscle 
of type 2 diabetes patients is restored by endurance exercise-
training. Diabetologia 54: 157-167 
[295] Jørgensen ME, Schnurr TM, Jørsboe E, et al. (2016) 
Physical activity energy expenditure attenuates the effect of 
the TBC1D4 p.Arg684Ter loss-of-function variant. 
Diabetologia 59(S1): 209 
[296] Langenberg C, Lotta LA (2018) Genomic insights into 
the causes of type 2 diabetes. Lancet 391: 2463-2474 
[297] Sarwar N, Aspelund T, Eiriksdottir G, et al. (2010) 
Markers of Dysglycaemia and Risk of Coronary Heart Disease 
in People without Diabetes: Reykjavik Prospective Study and 
Systematic Review. PLoS Med 7: e1000278 
[298] Faerch K, Vistisen D, Johansen NB, Jorgensen ME 
(2014) Cardiovascular risk stratification and management in 
pre-diabetes. Curr Diab Rep 14: 493 
[299] Kodama S, Saito K, Tanaka S, et al. (2012) Fasting and 
Post-Challenge Glucose as Quantitative Cardiovascular Risk 
Factors: A Meta-Analysis. J Atheroscler Thromb 19: 385-396 
[300] Ramachandran S, Deshpande O, Roseman CC, 
Rosenberg NA, Feldman MW, Cavalli-Sforza LL (2005) 
Support from the relationship of genetic and geographic 



- 65 - 

distance in human populations for a serial founder effect 
originating in Africa. Proc Natl Acad Sci U S A 102: 15942-
15947 
[301] Fu YX (1997) Statistical tests of neutrality of 
mutations against population growth, hitchhiking and 
background selection. Genetics 147: 915-925 
[302] Krogh A, Krogh M (1915) A study of the diet and 
metabolism of Eskimos undertaken in 1908 on an expedition 
to Greenland. Medd Grønl 51: 1-52 
[303] Kleinert M, Clemmensen C, Hofmann SM, et al. (2018) 
Animal models of obesity and diabetes mellitus. Nat Rev 
Endocrinol 14: 140-162 
[304] Thomsen SK, Gloyn AL (2017) Human genetics as a 
model for target validation: finding new therapies for 
diabetes. Diabetologia 60: 960-970 
[305] MacArthur DG, Balasubramanian S, Frankish A, et al. 
(2012) A systematic survey of loss-of-function variants in 
human protein-coding genes. Science 335: 823-828 
[306] Dewey FE, Grove ME, Pan C, et al. (2014) Clinical 
interpretation and implications of whole-genome sequencing. 
JAMA 311: 1035-1045 
[307] Dewey FE, Gusarova V, Dunbar RL, et al. (2017) 
Genetic and Pharmacologic Inactivation of ANGPTL3 and 
Cardiovascular Disease. N Engl J Med 377: 211-221 
[308] DeBoever C, Tanigawa Y, Lindholm ME, et al. (2018) 
Medical relevance of protein-truncating variants across 
337,205 individuals in the UK Biobank study. Nat Commun 9: 
1612 
[309] Emdin CA, Khera AV, Chaffin M, et al. (2018) Analysis 
of predicted loss-of-function variants in UK Biobank identifies 
variants protective for disease. Nat Commun 9: 1613 
[310] Andersen MK, Pedersen CE, Moltke I, Hansen T, 
Albrechtsen A, Grarup N (2016) Genetics of Type 2 Diabetes: 
the Power of Isolated Populations. Curr Diab Rep 16: 65 
[311] Sulem P, Helgason H, Oddson A, et al. (2015) 
Identification of a large set of rare complete human knockouts. 
Nat Genet 47: 448-452 
[312] Lim ET, Würtz P, Havulinna AS, et al. (2014) 
Distribution and Medical Impact of Loss-of-Function Variants 
in the Finnish Founder Population. PLoS Genet 10: e1004494 
[313] Fumagalli M, Moltke I, Grarup N, et al. (2015) 
Greenlandic Inuit show genetic signatures of diet and climate 
adaptation. Science 349: 1343-1347 
[314] Pedersen CT, Lohmueller KE, Grarup N, et al. (2017) 
The Effect of an Extreme and Prolonged Population Bottleneck 
on Patterns of Deleterious Variation: Insights from the 
Greenlandic Inuit. Genetics 205: 787-801 
[315] Saleheen D, Natarajan P, Armean IM, et al. (2017) 
Human knockouts and phenotypic analysis in a cohort with a 
high rate of consanguinity. Nature 544: 235-239 
[316] Speliotes EK, Willer CJ, Berndt SI, et al. (2010) 
Association analyses of 249,796 individuals reveal 18 new loci 
associated with body mass index. Nat Genet 42: 937-948 
[317] Warrington NM, Howe LD, Paternoster L, et al. (2015) 
A genome-wide association study of body mass index across 
early life and childhood. Int J Epidemiol 44: 700-712 
[318] Saeed S, Bonnefond A, Tamanini F, et al. (2018) Loss-
of-function mutations in ADCY3 cause monogenic severe 
obesity. Nat Genet 50: 175-179 

[319] Tian Y, Peng B, Fu X (2018) New ADCY3 Variants 
Dance in Obesity Etiology. Trends Endocrinol Metab 29: 361-
363 
[320] Tong T, Shen Y, Lee HW, Yu R, Park T (2016) Adenylyl 
cyclase 3 haploinsufficiency confers susceptibility to diet-
induced obesity and insulin resistance in mice. Sci Rep 6: 
34179 
[321] Pitman JL, Wheeler MC, Lloyd DJ, Walker JR, Glynne RJ, 
Gekakis N (2014) A gain-of-function mutation in adenylate 
cyclase 3 protects mice from diet-induced obesity. PLoS One 9: 
e110226 
[322] Wang Z, Li V, Chan GC, et al. (2009) Adult type 3 
adenylyl cyclase-deficient mice are obese. PLoS One 4: e6979 
[323] Chen X, Luo J, Leng Y, et al. (2016) Ablation of Type III 
Adenylyl Cyclase in Mice Causes Reduced Neuronal Activity, 
Altered Sleep Pattern, and Depression-like Phenotypes. Biol 
Psychiatry 80: 836-848 
[324] Vaisse C, Reiter JF, Berbari NF (2017) Cilia and 
Obesity. Cold Spring Harb Perspect Biol 9: a028217 
[325] Siljee JE, Wang Y, Bernard AA, et al. (2018) Subcellular 
localization of MC4R with ADCY3 at neuronal primary cilia 
underlies a common pathway for genetic predisposition to 
obesity. Nat Genet 50: 180-185 
[326] Mackay TF (2001) The genetic architecture of 
quantitative traits. Annu Rev Genet 35: 303-339 
[327] Boyle EA, Li YI, Pritchard JK (2017) An Expanded View 
of Complex Traits: From Polygenic to Omnigenic. Cell 169: 
1177-1186 
[328] Fisher RA (1918) The correlation between relatives on 
the supposition of Mendelian inheritance. Proc Roy Soc Edinb 
52: 399-433 
[329] Barton NH, Etheridge AM, Veber A (2017) The 
infinitesimal model: Definition, derivation, and implications. 
Theor Popul Biol 118: 50-73 
[330] Visscher PM, Hill WG, Wray NR (2008) Heritability in 
the genomics era - concepts and misconceptions. Nat Rev 
Genet 9: 255-266 
[331] Lande R (1976) Natural selection and random genetic 
drift in phenotypic evoluation. Evolution 30: 314-334 
[332] Sigma Type Diabetes Consortium, Estrada K, Aukrust 
I, et al. (2014) Association of a low-frequency variant in 
HNF1A with type 2 diabetes in a Latino population. JAMA 311: 
2305-2314 
[333] The Sigma Type Diabetes Consortium, Williams AL, 
Jacobs SBR, et al. (2014) Sequence variants in SLC16A11 are a 
common risk factor for type 2 diabetes in Mexico. Nature 506: 
97-101 
[334] Mercader JM, Liao RG, Bell AD, et al. (2017) A Loss-of-
Function Splice Acceptor Variant in IGF2 Is Protective for Type 
2 Diabetes. Diabetes 66: 2903-2914 
[335] Baier LJ, Muller YL, Remedi MS, et al. (2015) ABCC8 
R1420H Loss-of-Function Variant in a Southwest American 
Indian Community: Association With Increased Birth Weight 
and Doubled Risk of Type 2 Diabetes. Diabetes 64: 4322-4332 
[336] Hegele RA, Cao H, Harris SB, Hanley AJ, Zinman B 
(1999) The hepatic nuclear factor-1alpha G319S variant is 
associated with early-onset type 2 diabetes in Canadian Oji-
Cree. J Clin Endocrinol Metab 84: 1077-1082 



- 66 - 

[337] Albert JS, Yerges-Armstrong LM, Horenstein RB, et al. 
(2014) Null mutation in hormone-sensitive lipase gene and 
risk of type 2 diabetes. N Engl J Med 370: 2307-2315 
[338] Minster RL, Hawley NL, Su CT, et al. (2016) A thrifty 
variant in CREBRF strongly influences body mass index in 
Samoans. Nat Genet 48: 1049-1054 
[339] Timpson NJ, Greenwood CMT, Soranzo N, Lawson DJ, 
Richards JB (2018) Genetic architecture: the shape of the 
genetic contribution to human traits and disease. Nat Rev 
Genet 19: 110-124 
[340] Southam L, Gilly A, Suveges D, et al. (2017) Whole 
genome sequencing and imputation in isolated populations 
identify genetic associations with medically-relevant complex 
traits. Nat Commun 8: 15606 
[341] Tachmazidou I, Dedoussis G, Southam L, et al. (2013) 
A rare functional cardioprotective APOC3 variant has risen in 
frequency in distinct population isolates. Nat Commun 4: 2872 
[342] Manning A, Highland HM, Gasser J, et al. (2017) A Low-
Frequency Inactivating AKT2 Variant Enriched in the Finnish 
Population Is Associated With Fasting Insulin Levels and Type 
2 Diabetes Risk. Diabetes 66: 2019-2032 
[343] Dupuis J, Langenberg C, Prokopenko I, et al. (2010) 
New genetic loci implicated in fasting glucose homeostasis and 
their impact on type 2 diabetes risk. Nat Genet 42: 105-116 
[344] Froguel P, Vaxillaire M, Sun F, et al. (1992) Close 
linkage of glucokinase locus on chromosome 7p to early-onset 
non-insulin-dependent diabetes mellitus. Nature 356: 162-
164 
[345] Horikawa Y, Iwasaki N, Hara M, et al. (1997) Mutation 
in hepatocyte nuclear factor-1 beta gene (TCF2) associated 
with MODY. Nat Genet 17: 384-385 
[346] Yamagata K, Furuta H, Oda N, et al. (1996) Mutations 
in the hepatocyte nuclear factor-4alpha gene in maturity-
onset diabetes of the young (MODY1). Nature 384: 458-460 
[347] Yamagata K, Oda N, Kaisaki PJ, et al. (1996) Mutations 
in the hepatocyte nuclear factor-1alpha gene in maturity-
onset diabetes of the young (MODY3). Nature 384: 455-458 
[348] Barroso I, Gurnell M, Crowley VE, et al. (1999) 
Dominant negative mutations in human PPARgamma 
associated with severe insulin resistance, diabetes mellitus 
and hypertension. Nature 402: 880-883 
[349] Gloyn AL (2004) Activating mutations in the gene 
encoding the ATP-sensitive potassium-channel subunit Kir6.2 
and permanent neonatal diabetes. N Engl J Med 350: 1838-
1849 
[350] Senee V (2006) Mutations in GLIS3 are responsible for 
a rare syndrome with neonatal diabetes mellitus and 
congenital hypothyroidism. Nat Genet 38: 682-687 
[351] Inoue H, Tanizawa Y, Wasson J, et al. (1998) A gene 
encoding a transmembrane protein is mutated in patients 
with diabetes mellitus and optic atrophy (Wolfram 
syndrome). Nat Genet 20: 143-148 
[352] Krude H, Biebermann H, Luck W, Horn R, Brabant G, 
Grüters A (1998) Severe early-onset obesity, adrenal 
insufficiency and red hair pigmentation caused by POMC 
mutations in humans. Nat Genet 19: 155-157 
[353] Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, 
O'Rahilly S (1998) A frameshift mutation in MC4R associated 
with dominantly inherited human obesity. Nat Genet 20: 111-
112 

[354] Clement K, Vaisse C, Lahlou N, et al. (1998) A mutation 
in the human leptin receptor gene causes obesity and pituitary 
dysfunction. Nature 392: 398-401 
[355] Han JC, Liu QR, Jones M, et al. (2008) Brain-derived 
neurotrophic factor and obesity in the WAGR syndrome. N 
Engl J Med 359: 918-927 
[356] Bochukova EG, Huang N, Keogh J, et al. (2010) Large, 
rare chromosomal deletions associated with severe early-
onset obesity. Nature 463: 666-670 
[357] Jackson RS, Creemers JW, Ohagi S, et al. (1997) Obesity 
and impaired prohormone processing associated with 
mutations in the human prohormone convertase 1 gene. Nat 
Genet 16: 303-306 
[358] Odom DT, Zizlsperger N, Gordon DB, et al. (2004) 
Control of pancreas and liver gene expression by HNF 
transcription factors. Science 303: 1378-1381 
[359] Boj SF, Parrizas M, Maestro MA, Ferrer J (2001) A 
transcription factor regulatory circuit in differentiated 
pancreatic cells. Proc Natl Acad Sci U S A 98: 14481-14486 
[360] McCarthy MI, Hattersley AT (2008) Learning from 
molecular genetics: novel insights arising from the definition 
of genes for monogenic and type 2 diabetes. Diabetes 57: 
2889-2898 
[361] Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark 
PM, Hattersley AT (2003) Genetic cause of hyperglycaemia 
and response to treatment in diabetes. Lancet 362: 1275-1281 
[362] Martagon AJ, Bello-Chavolla OY, Arellano-Campos O, et 
al. (2018) Mexican Carriers of the HNF1A p.E508K Variant Do 
Not Experience an Enhanced Response to Sulfonylureas. 
Diabetes Care 41: 1726-1731 
[363] Majithia AR, Tsuda B, Agostini M, et al. (2016) 
Prospective functional classification of all possible missense 
variants in PPARG. Nat Genet 48: 1570-1575 
[364] MacArthur DG, Manolio TA, Dimmock DP, et al. (2014) 
Guidelines for investigating causality of sequence variants in 
human disease. Nature 508: 469-476 
[365] Larsen LH, Echwald SM, Sorensen TI, Andersen T, 
Wulff BS, Pedersen O (2005) Prevalence of mutations and 
functional analyses of melanocortin 4 receptor variants 
identified among 750 men with juvenile-onset obesity. J Clin 
Endocrinol Metab 90: 219-224 
[366] Thanabalasingham G, Owen KR (2011) Diagnosis and 
management of maturity onset diabetes of the young (MODY). 
BMJ 343: d6044 
[367] Pearson ER (2006) Switching from insulin to oral 
sulfonylureas in patients with diabetes due to Kir6.2 
mutations. N Engl J Med 355: 467-477 
[368] Babenko AP, Polak M, Cavé H, et al. (2006) Activating 
mutations in the ABCC8 gene in neonatal diabetes mellitus. N 
Engl J Med 355: 456-466 
[369] Maruthur NM, Gribble MO, Bennett WL, et al. (2014) 
The pharmacogenetics of type 2 diabetes: a systematic review. 
Diabetes Care 37: 876-886 
[370] Zhou K, Yee SW, Seiser EL, et al. (2016) Variation in the 
glucose transporter gene SLC2A2 is associated with glycemic 
response to metformin. Nat Genet 48: 1055-1059 
[371] Owen KR (2018) Monogenic diabetes in adults: what 
are the new developments? Curr Opin Genet Dev 50: 103-110 
[372] McCarthy MI (2017) Painting a new picture of 
personalised medicine for diabetes. Diabetologia 60: 793-799 



- 67 - 

[373] Inzucchi SE, Bergenstal RM, Buse JB, et al. (2015) 
Management of hyperglycaemia in type 2 diabetes, 2015: a 
patient-centred approach. Update to a position statement of 
the American Diabetes Association and the European 
Association for the Study of Diabetes. Diabetologia 58: 429-
442 
[374] Lyssenko V, Jonsson A, Almgren P, et al. (2008) Clinical 
risk factors, DNA variants, and the development of type 2 
diabetes. N Engl J Med 359: 2220-2232 
[375] Ahlqvist E, Storm P, Karajamaki A, et al. (2018) Novel 
subgroups of adult-onset diabetes and their association with 
outcomes: a data-driven cluster analysis of six variables. 
Lancet Diabetes Endocrinol 6: 361-369 
[376] Merino J, Leong A, Liu CT, et al. (2018) Metabolomics 
insights into early type 2 diabetes pathogenesis and detection 
in individuals with normal fasting glucose. Diabetologia 61: 
1315-1324 
[377] Maurano MT, Humbert R, Rynes E, et al. (2012) 
Systematic Localization of Common Disease-Associated 
Variation in Regulatory DNA. Science 337: 1190-1195 
[378] Pai AA, Pritchard JK, Gilad Y (2015) The Genetic and 
Mechanistic Basis for Variation in Gene Regulation. PLOS 
Genetics 11: e1004857 
[379] The Encode Project Consortium (2012) An integrated 
encyclopedia of DNA elements in the human genome. Nature 
489: 57-74 
[380] Roadmap Epigenomics Consortium, Kundaje A, 
Meuleman W, et al. (2015) Integrative analysis of 111 
reference human epigenomes. Nature 518: 317-330 
[381] GTEx Consortium (2015) Human genomics. The 
Genotype-Tissue Expression (GTEx) pilot analysis: multitissue 
gene regulation in humans. Science 348: 648-660 
[382] Gallagher MD, Chen-Plotkin AS (2018) The Post-GWAS 
Era: From Association to Function. Am J Hum Genet 102: 717-
730 
[383] Morris AP (2014) Fine mapping of type 2 diabetes 
susceptibility loci. Curr Diab Rep 14: 549 
[384] Roy SS, Mukherjee AK, Chowdhury S (2018) Insights 
about genome function from spatial organization of the 
genome. Hum Genomics 12: 8 
[385] Ford K, McDonald D, Mali P (2018) Functional 
Genomics via CRISPR-Cas. J Mol Biol 
10.1016/j.jmb.2018.06.034 
[386] Potter SS (2018) Single-cell RNA sequencing for the 
study of development, physiology and disease. Nat Rev 
Nephrol 14: 479-492 
[387] Scannell JW, Blanckley A, Boldon H, Warrington B 
(2012) Diagnosing the decline in pharmaceutical R&D 
efficiency. Nat Rev Drug Discov 11: 191-200 
[388] Nelson MR, Tipney H, Painter JL, et al. (2015) The 
support of human genetic evidence for approved drug 
indications. Nat Genet 47: 856-860 
[389] Hurle MR, Nelson MR, Agarwal P, Cardon LR (2016) 
Trial watch: Impact of genetically supported target selection 
on R&D productivity. Nat Rev Drug Discov 15: 596-597 
[390] Dewey FE, Gromada J, Shuldiner AR (2016) Variants in 
ANGPTL4 and the Risk of Coronary Artery Disease. N Engl J 
Med 375: 2305-2306 

[391] Abifadel M, Varret M, Rabes JP, et al. (2003) Mutations 
in PCSK9 cause autosomal dominant hypercholesterolemia. 
Nat Genet 34: 154-156 
[392] Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH (2006) 
Sequence variations in PCSK9, low LDL, and protection against 
coronary heart disease. N Engl J Med 354: 1264-1272 
[393] Blom DJ, Hala T, Bolognese M, et al. (2014) A 52-week 
placebo-controlled trial of evolocumab in hyperlipidemia. N 
Engl J Med 370: 1809-1819 
[394] El Khoury P, Elbitar S, Ghaleb Y, et al. (2017) PCSK9 
Mutations in Familial Hypercholesterolemia: from a 
Groundbreaking Discovery to Anti-PCSK9 Therapies. Curr 
Atheroscler Rep 19: 49 
[395] Scott RA, Freitag DF, Li L, et al. (2016) A genomic 
approach to therapeutic target validation identifies a glucose-
lowering GLP1R variant protective for coronary heart disease. 
Sci Transl Med 8: 341ra376 
[396] Drucker DJ, Nauck MA (2006) The incretin system: 
glucagon-like peptide-1 receptor agonists and dipeptidyl 
peptidase-4 inhibitors in type 2 diabetes. Lancet 368: 1696-
1705 
[397] Plenge RM, Scolnick EM, Altshuler D (2013) Validating 
therapeutic targets through human genetics. Nat Rev Drug 
Discov 12: 581-594 
[398] Turnbull C, Scott RH, Thomas E, et al. (2018) The 
100 000 Genomes Project: bringing whole genome sequencing 
to the NHS. BMJ 361: k1952 
[399] Gaziano JM, Concato J, Brophy M, et al. (2016) Million 
Veteran Program: A mega-biobank to study genetic influences 
on health and disease. J Clin Epidemiol 70: 214-223 
[400] Chen Z, Chen J, Collins R, et al. (2011) China Kadoorie 
Biobank of 0.5 million people: survey methods, baseline 
characteristics and long-term follow-up. Int J Epidemiol 40: 
1652-1666 
[401] Wijmenga C, Zhernakova A (2018) The importance of 
cohort studies in the post-GWAS era. Nat Genet 50: 322-328 
[402] Walters RG, Coin LJ, Ruokonen A, et al. (2013) Rare 
genomic structural variants in complex disease: lessons from 
the replication of associations with obesity. PLoS One 8: 
e58048 
[403] Walters RG, Jacquemont S, Valsesia A, et al. (2010) A 
new highly penetrant form of obesity due to deletions on 
chromosome 16p11.2. Nature 463: 671-675 
[404] Franks PW, Pearson E, Florez JC (2013) Gene-
Environment and Gene-Treatment Interactions in Type 2 
Diabetes: Progress, pitfalls, and prospects. Diabetes Care 36: 
1413-1421 
[405] Andreasen CH, Stender-Petersen KL, Mogensen MS, et 
al. (2008) Low physical activity accentuates the effect of the 
FTO rs9939609 polymorphism on body fat accumulation. 
Diabetes 57: 95-101 
[406] Kilpelainen TO, Qi L, Brage S, et al. (2011) Physical 
activity attenuates the influence of FTO variants on obesity 
risk: a meta-analysis of 218,166 adults and 19,268 children. 
PLoS Med 8: e1001116 
[407] Graff M, Scott RA, Justice AE, et al. (2017) Genome-
wide physical activity interactions in adiposity - A meta-
analysis of 200,452 adults. PLoS Genet 13: e1006528 
[408] Justice AE, Winkler TW, Feitosa MF, et al. (2017) 
Genome-wide meta-analysis of 241,258 adults accounting for 



- 68 - 

smoking behaviour identifies novel loci for obesity traits. Nat 
Commun 8: 14977 
[409] Karczewski KJ, Snyder MP (2018) Integrative omics 
for health and disease. Nat Rev Genet 19: 299-310 

 
 

 	



- 69 - 

ABBREVIATIONS	
 

Abbreviations	
AIR acute insulin response 
BMI  body mass index 
CIR corrected insulin response 
CVD cardiovascular disease 
GLP1 glucagon-like peptide 1 
GSIS glucose-stimulated insulin response 
GWAS genome-wide association study 
HDL high-density lipoprotein 
HOMA homeostasis-model assessment 
hr hour 
HRC haplotype reference consortium 
IVGTT intravenous glucose tolerance test 
LD linkage disequilibrium 
LDL low-density lipoprotein 
MAF minor allele frequency 
MODY maturity-onset diabetes of the young 
OGTT oral glucose tolerance test 
RAF risk allele frequency 
SNP single-nucleotide polymorphism 
T2D type 2 diabetes 
WHR waist-hip ratio 
 

Gene	names	
ABCC8	 ATP binding cassette subfamily C 

member 8 
ABO	 ABO, alpha 1-3-N-

acetylgalactosaminyltransferase and 
alpha 1-3-galactosyltransferase 

ACSL1	 acyl-CoA synthetase long chain family 
member 1 

ADAMTS9	 ADAM metallopeptidase with 
thrombospondin type 1 motif 9 

ADCY3	 adenylate cyclase 3 
ADCY5	 adenylate cyclase 5 
ANGPTL3	 angiopoietin like 3 
ANK1	 ankyrin 1 
ANKH	 ANKH inorganic pyrophosphate 

transport regulator 
ANKRD55	 ankyrin repeat domain 55 
AP3S2	 adaptor related protein complex 3 

subunit sigma 2 
APOB	 apolipoprotein B 
APOC3	 apolipoprotein C3 
APOE	 apolipoprotein E 
ARAP1	 ArfGAP with RhoGAP domain, ankyrin 

repeat and PH domain 1 
ARL15	 ADP ribosylation factor like GTPase 15 
BCAR1	 BCAR1, Cas family scaffold protein 
BCL11A	 BCL11A, BAF complex component 
BCL2		 BCL2, apoptosis regulator 
BDNF	 brain derived neurotrophic factor 

BPTF	 bromodomain PHD finger transcription 
factor 

C2CD4A	 C2 calcium dependent domain 
containing 4A 

C2CD4B	 C2 calcium dependent domain 
containing 4B 

CCND2	 cyclin D2 
CD300LG	 CD300 molecule like family member g 
CDC123	 cell division cycle 123 
CDKAL1	 CDK5 regulatory subunit associated 

protein 1 like 1 
CDKN2A	 cyclin dependent kinase inhibitor 2A 
CDKN2B	 cyclin dependent kinase inhibitor 2B 
CENPW	 centromere protein W 
CEP68	 centrosomal protein 68 
CMIP	 c-Maf inducing protein 
COBLL1	 cordon-bleu WH2 repeat protein like 1 
CREBRF	 CREB3 regulatory factor 
DGKB	 diacylglycerol kinase beta 
FADS1	 fatty acid desaturase 1 
FAF1	 Fas associated factor 1 
FAM13A	 family with sequence similarity 13 

member A 
FAM19A2	 family with sequence similarity 19 

member A2, C-C motif chemokine like 
FAM234A	 family with sequence similarity 234 

member A 
FOLR3	 folate receptor 3 
FTO	 FTO, alpha-ketoglutarate dependent 

dioxygenase 
FUT2	 fucosyltransferase 2 
FUT6	 fucosyltransferase 6 
GCK	 glucokinase 
GCKR	 glucokinase regulator 
GIPR	 gastric inhibitory polypeptide receptor 
GLIS3	 GLIS family zinc finger 3 
GLP2R	 glucagon like peptide 2 receptor 
GPR151	 G protein-coupled receptor 151 
GPSM1	 G protein signaling modulator 1 
GRB10	 growth factor receptor bound protein 10 
GRB14	 growth factor receptor bound protein 14 
HHEX	 hematopoietically expressed homeobox 
HMG20A	 high mobility group 20A 
HMGA2	 high mobility group AT-hook 2 
HNF1A	 HNF1 homeobox A 
HNF1B	 HNF1 homeobox B 
HNF4A	 hepatocyte nuclear factor 4 alpha 
HSD17B12	 hydroxysteroid 17-beta dehydrogenase 

12 
IDE	 insulin degrading enzyme 
IGF1	 insulin like growth factor 1 
IGF2	 insulin like growth factor 2 
IGF2BP2	 insulin like growth factor 2 mRNA 

binding protein 2 
INS	 insulin 
IRS1	 insulin receptor substrate 1 
ITGA1	 integrin subunit alpha 1 
JADE2	 jade family PHD finger 2 
JAZF1	 JAZF zinc finger 1 
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KCNJ11	 potassium voltage-gated channel 
subfamily J member 11 

KCNQ1	 potassium voltage-gated channel 
subfamily Q member 1 

KIF9	 kinesin family member 9 
KL	 klotho 
KLF14	 Kruppel like factor 14 
KLHL42	 kelch like family member 42 
LAMA1	 laminin subunit alpha 1 
LARGE1	 LARGE xylosyl- and 

glucuronyltransferase 1 
LDLR	 low density lipoprotein receptor 
LEPR	 leptin receptor 
LIPE	 lipase E, hormone sensitive type 
LPL	 lipoprotein lipase 
LPP	 LIM domain containing preferred 

translocation partner in lipoma 
MACF1	 microtubule-actin crosslinking factor 1 
MADD	 MAP kinase activating death domain 
MAEA	 macrophage erythroblast attacher 
MAP3K11	 mitogen-activated protein kinase kinase 

kinase 11 
MC4R	 melanocortin 4 receptor 
MLX	 MLX, MAX dimerization protein 
MNX1	 motor neuron and pancreas homeobox 1 
MPHOSPH9	 M-phase phosphoprotein 9 
MTHFR	 methylenetetrahydrofolate reductase 
MTMR3	 myotubularin related protein 3 
MTNR1B	 melatonin receptor 1B 
NAT2	 N-acetyltransferase 2 
NFAT5	 nuclear factor of activated T cells 5 
NOTCH2	 notch 2 
NPC1L1	 NPC1 like intracellular cholesterol 

transporter 1 
NRG4	 neuregulin 4 
NRXN3	 neurexin 3 
NTRK2	 neurotrophic receptor tyrosine kinase 2 
PAM	 peptidylglycine alpha-amidating 

monooxygenase 
PAX4	 paired box 4 
PCSK1	 proprotein convertase subtilisin/kexin 

type 1 
PCSK9	 proprotein convertase subtilisin/kexin 

type 9 
PDE3B	 phosphodiesterase 3B 
PDX1	 pancreatic and duodenal homeobox 1 
PEPD	 peptidase D 
PIM3	 Pim-3 proto-oncogene, serine/threonine 

kinase 
PLEKHA1	 pleckstrin homology domain containing 

A1 
PNPLA3	 patatin like phospholipase domain 

containing 3 
POC5	 POC5 centriolar protein 
POMC	 proopiomelanocortin 
PPARG	 peroxisome proliferator activated 

receptor gamma 
PRC1	 protein regulator of cytokinesis 1 
PROX1	 prospero homeobox 1 
PSMD6	 proteasome 26S subunit, non-ATPase 6 
PTPN9	 protein tyrosine phosphatase, non-

receptor type 9 
RASGRP1	 RAS guanyl releasing protein 1 

RBMS1	 RNA binding motif single stranded 
interacting protein 1 

RNF6	 ring finger protein 6 
RREB1	 ras responsive element binding protein 

1 
SH2B1	 SH2B adaptor protein 1 
SLC16A11	 solute carrier family 16 member 11 
SLC22A3	 solute carrier family 22 member 3 
SLC2A2	 solute carrier family 2 member 2 
SLC30A8	 solute carrier family 30 member 8 
SLC35D3	 solute carrier family 35 member D3 
SPRY2	 sprouty RTK signaling antagonist 2 
ST6GAL1	 ST6 beta-galactoside alpha-2,6-

sialyltransferase 1 
TBC1D4	 TBC1 domain family member 4 
TCF7L2	 transcription factor 7 like 2 
TFAP2B	 transcription factor AP-2 beta 
THADA	 THADA, armadillo repeat containing 
TLE1	 TLE family member 1, transcriptional 

corepressor 
TLE4	 TLE family member 4, transcriptional 

corepressor 
TM6SF2	 transmembrane 6 superfamily member 

2 
TMEM154	 transmembrane protein 154 
TMEM18	 transmembrane protein 18 
TP53INP1	 tumor protein p53 inducible nuclear 

protein 1 
TSPAN8	 tetraspanin 8 
TTLL6	 tubulin tyrosine ligase like 6 
UBE2E2	 ubiquitin conjugating enzyme E2 E2 
VEGFA	 vascular endothelial growth factor A 
VPS13C	 vacuolar protein sorting 13 homolog C 
WFS1	 wolframin ER transmembrane 

glycoprotein 
WSCD2	 WSC domain containing 2 
ZBED3	 zinc finger BED-type containing 3 
ZMIZ1	 zinc finger MIZ-type containing 1 
ZZEF1	 zinc finger ZZ-type and EF-hand domain 

containing 1 
 

 


