2014 curriculum provisions for the Master of Science in Medicinal Chemistry (MSc in Medicinal Chemistry) programme at the Faculty of Health and Medical Sciences, University of Copenhagen

These curriculum provisions come into force on 1 September 2014 and apply to students admitted to the programme since 1. September 2011.

The curriculum provisions were approved by the Dean on 1 September 2014.

This subject-specific curriculum, the course or module descriptions in the overall University of Copenhagen course database and the general curriculum provisions together comprise the curriculum for the degree of Master of Science in Medicinal Chemistry (MSc in Medicinal Chemistry).

Part 1 Objectives and qualification profile

§ 1 Objectives
The objectives of the Master of Medicinal Chemistry programme are
1. To enhance the student’s academic knowledge and ability, and to increase the theoretical and methodological qualifications acquired by the student on the bachelor programme
2. To provide the student with theoretical and methodological interdisciplinary qualifications enabling him or her upon completion to identify and solve complex problems in organic chemistry and medical chemistry independently and at an academic level
3. To provide the student with considerable training in scientific work and methods qualifying for a PhD or other postgraduate programme, and develops the student’s ability to work in the pharmaceutical or biotechnological industries in particular
4. To give graduates the competence to take on responsibility for exploiting research into pharmaceuticals.

1.2 Successful completion of the programme gives the right to use the title of kandidat i medicinskemikemi (cand.scient. i medicinskemikemi) and the English title of Master of Science in Medicinal Chemistry (MSc in Medicinal Chemistry).
1.3 The programme is worth 120 ECTS credits.
1.4 The programme belongs under the study board for the pharmaceutical sciences.
1.5 The programme belongs under the corps of external examiners for pharmaceutical degree programmes in Denmark.

§ 2 Admission requirements and competency profile
Applicants must have completed a bachelor programme in chemistry, medicinal chemistry or pharmacy at a Danish university and
1. Have accumulated at least 80 ECTS credits on chemistry courses in the fields of organic chemistry and physical chemistry with the emphasis on theoretical and experimental chemistry courses
2. Have accumulated at least 30 ECTS credits from biology courses in the fields of biochemistry, molecular biology, physiology and pharmacology, of which at least 5 ECTS credits must come from within general pharmacology.
2.2 Applicants with Danish bachelor degrees at variance from those described in 2.1 above may also apply for admission. The admissions panel will decide whether such applications equate to the specific requirements stipulated in 2.1. above.
2.3 Applicants holding bachelor degrees from universities abroad may also apply. The admissions panel will decide whether such degree programmes equate in content and scope to the specific requirements stipulated in 2.1. above.
2.4 The bachelor degree in question must have been gained no more than five years before commencement of the first semester of the programme.
2.5 In special circumstances the admissions panel may waive the requirements stipulated in 2.1 and 2.4.
2.6 50 students may be admitted per annum.
2.7 If more than 50 applicants meet the admission requirements stipulated above, applicants with the highest unweighted average grade for all components of the bachelor programme in question will be given top priority.

§ 3
Graduates with an MSc in Medicinal Chemistry have completed a research-based degree programme underpinned by the subject areas of medicinal chemistry, structural chemistry, advanced organic chemistry, and peptide and protein chemistry, thereby achieving chemical competency in the core subjects relevant in drug discovery. These qualifications are applicable in other contexts in the pharmaceutical, biopharmaceutical and biotechnical industries, for example, in connection with the design, production and development of potential new drugs.

The holder of an MSc in medicinal chemistry has acquired knowledge about:
- The rational basis for design and development of drugs
- New and effective methods of synthesis for incorporation of the most important functional groups
- The relationship between molecular structure and biological activity at the molecular level, including the importance of steric, stereochemical, conformational and electrostatic factors
- Structural chemical methods that can be used in the rational design of drugs
- Solid-phase methods of synthesis used to make peptides and peptide derivatives, including peptidomimetics
- The significance of conformational, steric and electronic factors with regard to regio- and stereoselective syntheses of drug candidates
- Physical-chemical parameters important for the development of potential drug substances.

The holder of an MSc in medicinal chemistry is able to:
- Analyse and evaluate methods of synthesis in order to choose an optimal strategy for the synthesis of a target molecule
- Design, plan and conduct advanced syntheses on the basis of a critical review of articles in international journals and patent literature
- Use and critically evaluate results achieved by modern computer-based methods for structural-activity analyses of biologically active compounds (potential drugs)
- Explain the key principles used for the rational basis of design and development of new drugs
- Explain the most important chemical, physical-chemical and pharmacokinetic properties of important groups of drugs
• Explain the properties and reactivity of heteroaromatic compounds
• Plan chemical modifications of proteins and estimate the effects.

The holder of an MSc in medicinal chemistry is able to:
• Plan, carry out and report on research and development projects, for example, related to the design and production of new small molecule and macromolecular drugs in cooperation with scientists from other disciplines
• Plan and conduct advanced organic chemical syntheses as well as syntheses and modifications of peptides, proteins etc. relevant to the pharmaceutical and biotechnological industries.

Part 2 Modular structure, instruction, maximum duration of study

§ 4 Modular structure and instruction

The programme consists of a number of compulsory course modules (totaling 45 ECTS credits), a number of elective course modules (15-30 ECTS credits) and a master’s thesis (45-60 ECTS credits)

4.2 The programme covers:
1. Reactions and synthesis in medicinal chemistry (15 ECTS credits)
2. Medicinal and biostructural chemistry (7.5 ECTS credits)
3. Structural and computational medicinal chemistry (7.5 ECTS credits)
4. Heterocyclic chemistry (7.5 ECTS credits)
5. Biopharmaceuticals: Chemical design and modification of (7.5 ECTS credits)
6. Master’s thesis of 45, 52.5 or 60 ECTS credits in the field of medicinal chemistry
7. Elective course modules comprising at least 15 ECTS credits and at most 30 ECTS credits,

4.3. The subjects that make up the programme correspond to 4.2.1-6 above.

4.4. Each student’s syllabus must be drawn up in cooperation with the thesis supervisor to ensure that:
1. There is a reasonable connection and progression between the completed bachelor programme and the master’s programme to be undertaken.
2. The student has acquired the academic foundation necessary to complete the chosen master’s thesis.
3. The master’s programme to be followed incorporates optimal academic progression.

4.5. The individual syllabus must be submitted to the head of studies for approval by 15 April of the first year of the programme.

4.6. If the student completes the first year of the programme at the University of Copenhagen and the second year at Vrije Universiteit, The Netherlands, enrolled on the Master of Science in Drug Discovery and Safety in accordance with the pertaining set of regulations, the student will gain a “double degree” with the title of kandidat i Medicinalkemi (cand.scient. i medicinalkemi) from the University of Copenhagen and the title of MSc in Drug Discovery and Safety from Vrije Universiteit.

4.7. Instruction is primarily in the form of lectures, dialog-based class teaching, project work (individually and in small groups) and experimental exercises.

§ 5 Maximum duration of study
The student must complete the programme within four years of commencement.

5.2 The study board may extend this deadline in special circumstances.

Part 3 Course modules and exams

§ 6
The master’s programme in medicinal chemistry contains the following course modules and exams:

<table>
<thead>
<tr>
<th>1st Year</th>
<th>1st semester</th>
<th>Block 1</th>
<th>Reactions and Synthesis in Medicinal Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Block 2</td>
<td>Medicinal and Biostructural Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Block 3</td>
<td>Heterocyclic Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Block 4</td>
<td>Elective modules or master’s thesis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd Year</th>
<th>1st semester</th>
<th>Block 1</th>
<th>Elective modules or master’s thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Block 2</td>
<td>Elective modules or master’s thesis</td>
<td></td>
</tr>
<tr>
<td>2nd semester</td>
<td>Block 3</td>
<td>Master’s thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Block 4</td>
<td>Master’s thesis</td>
<td></td>
</tr>
</tbody>
</table>
§ 7
The programme includes 45 ECTS credits in compulsory course and exam activities.
7. 2. The programme includes 15 – 30 ECTS credits in elective modules or master’s thesis.
7. 3. The programme includes 45 – 60 ECTS credits for the master’s thesis.

§ 8
The following course modules and exams are included in the programme:

1 semester
Name of course module: Medicinal and Biostructural Chemistry
STADS code: SFAKM0011U
ECTS: 7,5

Name of course module: Structural and Computational Medicinal Chemistry
STADS code: SFKKM9011U
ECTS: 7,5

Name of course module: Reactions and Synthesis in Medicinal Chemistry
STADS code: NKEK13007U
ECTS: 15

2 semester
Name of course module: Heterocyclic Chemistry
STADS code: NKEA08006U
ECTS: 7,5

Name of course module: Biopharmaceuticals: Chemical Design & Modification of Biomacromolecules
STADS code: SFKKIL003U
ECTS: 7,5

3 semester
Name of course module: Master's thesis
STADS code: SPECIALENG
ECTS: 30

4 semester
Name of course module: Master's thesis
STADS code: SPECIALENG
ECTS: 30
§ 9 Group exams
Where the course description permits students to complete an assignment together, the submitted assignment must clearly identify the contribution made by each student in order to enable individual assessment.

§ 10 Instruction and exam language
English.

§ 11 Elective element
To complete the programme students must take an elective course element worth between 15 and 30 ECTS credits. This element may be taken as a module prior to or in parallel with the master’s thesis.
11.2. The study board must ensure that the student has access to at least 18 elective courses each worth 7.5 or 15 ECTS credits. The elective courses are described in the course database, where they will be announced no later than 1 May and 1 September of the preceding semester.
11.3. The elective course descriptions must be approved by the study board no later than a year before the course is held.
11.4. The study board offers the elective courses in accord with the objectives of the programme, see 1.1 above.
11.5. An independent research paper or report or similar worth 7.5, 15, 22.5 or 30 ECTS credits may be completed in accordance with the course description for Individualised Study Units STADS code: ITSKABA111

§ 12 Allocation of places on course modules
While on the programme students may select and label as top priority modules of their choice amounting to no more than 15 ECTS credits. If a module is oversubscribed places will be allocated in the following order of priority:

1. Students for whom the module is compulsory.
2. Ten per cent of the places on courses offered in English are reserved for visiting students. They are allocated on a first come, first served basis according to an academic assessment prior to the deadline for enrolment.
3. Students on programmes offered by the study board for the pharmaceutical sciences who have labelled the module as top priority on enrolment. Lots will be drawn if necessary.
4. Students on programmes offered by the study board for the pharmaceutical sciences who have labelled the module as low priority on enrolment. Lots will be drawn if necessary.
5. International visiting students who have not obtained places within the dedicated ten-per-cent quota, following an academic assessment.
6. Other students following an academic assessment.

11.2. If fewer than 15 students sign up for a module it may be cancelled.
11.3. Students who are refused enrolment on an oversubscribed or cancelled module will be given a new deadline to sign up for modules with vacant places.

§ 12 Master’s thesis
During the third and fourth semesters (and possibly the second semester) the student prepares a master’s thesis. The thesis demonstrates the student’s ability to formulate, analyse and process problems within a relevant, limited scientific subject in a qualified fashion.

12. 2. The Master project may be prepared alone or by groups of two students.
12. 3. The thesis must be written in English and in accordance with the approved contract.
12. 4. Assessment will be based on the student’s spelling and writing skills as well as the scientific content of the thesis. The scientific content will carry most weight
12. 5. The Master project is worth 45, 52.5 or 60 ECTS credits.

Part 4 Concluding remarks
§ 13 Transitional arrangements
These are determined by the study board.

§ 14 Exemptions from these provisions
In exceptional circumstances, the study board may grant exemptions from any curriculum provisions within the sole remit of the study board.

§ 15 Date of commencement
These curriculum provisions come into force on 1 September 2014 and apply to students admitted to the programme since 1. September 2011.